
B.Sc. [Computer Science]
VI - Semester

130 62

Directorate of Distance Education

VISUAL BASIC PROGRAMMING

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

Authors:
Dr Neetu Mishra Shukla, Asst. Professor (Grade - III), Amity Institute of Education, AMITY University, Noida
Units (1, 2.2, 2.3.2, 7-9, 11-13)
Deb Dulal Halder, Assistant Professor, Department of English, Kirori Mal College, University of Delhi
Units (2.4, 3.2, 3.4, 5.2, 6.4.1, 6.5, 10)
Dr. Shuchi Agarwal, Associate Professor, Amity University, NOIDA
Units (5.3, 5.5.1, 6.4, 6.4.2-6.4.3)
Dr Joita Dhar Rakshit, Assistant Professor, Acharya Narendra Dev College, University of Delhi
Units (5.4, 5.5, 6.2, 6.3)
J C Aggarwal, Former Deputy Director of Education, Delhi Administration, Delhi
Unit (14)
Vikas®Publishing House, Units (2.0-2.1, 2.3, 2.3.1, 2.3.3-2.3.5, 2.5-2.9, 3.0-3.1, 3.3, 3.5, 3.6-3.10, 4, 5.0-5.1, 5.6-5.10, 6.0-6.1,
6.6-6.10)

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fitness for any particular use.

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 Fax: 0120-4078999
Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
 Website: www.vikaspublishing.com Email: helpline@vikaspublishing.com

"The copyright shall be vested with Alagappa University"

Work Order No. AU/DDE/DE-12-27/Preparation and Printing of Course Materials/2020 Dated 12.08.2020 Copies -

SYLLABUS
Visual Basic Programming

BLOCK I : VISUAL BASIC CONCEPTS

UNIT 1 - Introduction to GUI - Visual Basic: Starting and Exiting Visual Basic
Project Explorer, Working with Forms, Properties Window.

UNIT 2 - Using the Toolbox, Toolbars, Working with Projects, Programming
Structure of Visual Basic Applications, Event and Event Driven Procedures.

UNIT 3 - Program Design: Form and Controls, Writing the Code, Saving,
Running and Testing, Making EXE File, Printouts.

BLOCK II : VISUAL BASIC CODE, EVENTS AND CONTROLS

UNIT 4 - Adding Code and Using Events: Using Literals Data Types, Declaring
and Using Variables, Using the Operator Subroutines and Functions.

UNIT 5 - Looping and Decision Control Structures: If…Then…Else, Structure,
Select Structure, For…Next, Do…Loop and While…Wend.
UNIT 6 - Using Intrinsic Visual Basic Controls with Methods and Properties:
Label, Text Box, Command Button, Frame, Check Box, Option Button, List
Box, Combo Box, Drive List Box, Directory List Box and File List Box, Formatting
Controls, Control Arrays, Tab Order.

BLOCK III : VISUAL BASIC PROCEDURES, FUNCTIONS AND ARRAYS

UNIT 7 - Creating Procedures, Functions, String Functions, Date and Time
Function, Numeric Functions, Recursive Functions.

UNIT 8 - Multiple Forms, Startup Forms, SubMain Procedure.

UNIT 9 - Arrays, Control Arrays, Indexing and Event Handling, Graphics.

BLOCK IV : MENUS AND MDI FORMS

UNIT 10 - Menus: Creating Menus, Adding Code to Menus.

UNIT 11 - Using MDI Forms: MDI Form, Basic Building MDI Form, Creating
MDI Child Forms.

BLOCK V: DATAACCESS OBJECT (DAO) AND PROPERTIES

UNIT 12 - Database Object (DAO) and Properties: Accessing Recordset
Objects; MoveFirst, MoveLast, MovePrevious and MoveNext Methods;
Begin, Commit and Rollback Transaction, Accessing Microsoft Access Files.

UNIT 13 - Active Data Objects (ADO): ADO and OLE DB and ADO Primer,
What are OLE DB and ADO? ADO Object Model, Converting DAO Code to
Use ADO.

UNIT 14 - Connecting to the Database, Retrieving a Recordset, Creating a
Query Dynamically, Using a Parameterized Query, Using Action Queries,
Adding Records, Editing Records, Closing the Database Connection.

Unit 1: Introduction to
Graphical user Interface

(Pages 1-26);

Unit 2: Using the Toolbox
(Pages 27-46);

Unit 3: Program Design
(Pages 47-60)

Unit 4: Adding Code and
Using Events

(Pages 61-90);

Unit 5: Looping and Decision
Control Structures

(Pages 91-100);

Unit 6: Using Intrinsic Visual Basic
Controls with Methods

and Properties
(Pages 101-128)

Unit 7: Creating Procedures
and Functions

(Pages 129-146);

Unit 8: Multiple Forms
(Pages 147-162);

Unit 9: Arrays
(Pages 163-186)

Unit 10: Menus
(Pages 187-218);

Unit 11: Using MDI Forms
(Pages 219-236)

Unit 12: Data Access Object

(DAO) and Properties
(Pages 237-254);

Unit 13: Active Data Objects
(ADO) and ADO Primer

(Pages 255-276);

Unit 14: Connecting to
the Database

(Pages 277-308)

INTRODUCTION

BLOCK I: VISUAL BASIC CONCEPTS

UNIT 1 INTRODUCTION TO GRAPHICAL USER INTERFACE 1-26
1.0 Introduction
1.1 Objectives
1.2 Visual Basic

1.2.1 Features of Visual Basic
1.2.2 Visual Basic 6.0 Versus Earlier Versions of Visual Basic
1.2.3 Event-Driven Programming
1.2.4 Properties, Methods and Events
1.2.5 Getting Started with Visual Basic 6.

1.3 Understanding Visual Basic Projetcs
1.3.1 Visual Basic Environment (Integrated Development Environment)
1.3.2 Visual Basic Program Development Process
1.3.3 Opening/Saving Running a Visual Basic Project

1.4 Answers to Check Your Progress Questions
1.5 Summary
1.6 Key Words
1.7 Self-Assessment Questions and Exercises
1.8 Further Readings

UNIT 2 USING THE TOOLBOX 27-46
2.0 Introduction
2.1 Objectives
2.2 Working with Toolbar
2.3 Use of the Toolbox
2.4 Project Programming Structure in Visual Basic Application
2.5 Event and Event Driven Procedures
2.6 Answers to Check Your Progress Questions
2.7 Summary
2.8 Key Words
2.9 Self-Assessment Questions and Exercises

2.10 Further Readings

UNIT 3 PROGRAM DESIGN 47-60
3.0 Introduction
3.1 Objectives
3.2 Forms and Controls

3.2.1 Creating and Saving a New Program
3.2.2 Restoring/Opening an Existing Program
3.2.3 Running the Program
3.2.4 Stopping the Program
3.2.6 Printing Visual Basic Project
3.2.7 Exiting Visual Basic

3.3 Making Exe Files
3.4 Answers to Check Your Progress Questions
3.5 Summary
3.6 Key Words

CONTENTS

3.7 Self-Assessment Questions and Exercises
3.8 Further Readings

BLOCK II: VISUAL BASIC CODE, EVENTS AND CONTROLS

UNIT 4 ADDING CODE AND USING EVENTS 61-90
4.0 Introduction
4.1 Objectives
4.2 Data Types
4.3 Declaring and Using Variables
4.4 Introducing Operators

4.4.1 Arithmetic Operators
4.4.2 Relational Operators
4.4.3 Concatenation Operators
4.4.4 Logical Operators

4.5 Answers to Check Your Progress Questions
4.6 Summary
4.7 Key Words
4.8 Self-Assessment Questions and Exercises
4.9 Further Readings

UNIT 5 LOOPING AND DECISION CONTROL STRUCTURES 91-100
5.0 Introduction
5.1 Objectives
5.2 Looping and Decision Control Structures

5.2.1 Decision Structure
5.2.2 Loop Structure

5.3 Answers to Check Your Progress Questions
5.4 Summary
5.5 Key Words
5.6 Self-Assessment Questions and Exercises
5.7 Further Readings

UNIT 6 USING INTRINSIC VISUAL BASIC CONTROLS WITH
METHODS AND PROPERTIES 101-128

6.0 Introduction
6.1 Objectives
6.2 Basic Controls
6.3 Control Array
6.4 Answers to Check Your Progress Questions
6.5 Summary
6.6 Key Words
6.7 Self-Assessment Questions and Exercises
6.8 Further Readings

BLOCK III: VISUAL BASIC PROCEDURES, FUNCTIONS AND ARRAYS

UNIT 7 CREATING PROCEDURES AND FUNCTIONS 129-146
7.0 Introduction
7.1 Objectives
7.2 Creating Procedures and Functions

7.3 Answers to Check Your Progress Questions
7.4 Summary
7.5 Key Words
7.6 Self-Assessment Questions and Exercises
7.7 Further Readings

UNIT 8 MULTIPLE FORMS 147-162
8.0 Introduction
8.1 Objectives
8.2 Startup Forms
8.3 Submain Procedure
8.4 Answers to Check Your Progress Questions
8.5 Summary
8.6 Key Words
8.7 Self-Assessment Questions and Exercises
8.8 Further Readings

UNIT 9 ARRAYS 163-186
9.0 Introduction
9.1 Objectives
9.2 Arraya and Control Arrays

9.2.1 Fixed Size Arrays
9.2.2 Dynamic arrays
9.2.3 Array Characterstics
9.2.4 Processing Array Elements
9.2.5 Control arrays

9.3 Indexing and Event Handling
9.4 Graphics
9.5 Answers to Check Your Progress Questions
9.6 Summary
9.7 Key Words
9.8 Self-Assessment Questions and Exercises
9.9 Further Readings

BLOCK IV: MENUS AND MDI FORMS

UNIT 10 MENUS 187-218
10.0 Introduction
10.1 Objectives
10.2 Menus

10.2.1 Using the Visual Basic Application Wizard
10.2.2 Using the Visual Basic Menu Editor

10.3 Answers to Check Your Progress Questions
10.4 Summary
10.5 Key Words
10.6 Self-Assessment Questions and Exercises
10.7 Further Readings

UNIT 11 USING MDI FORMS 219-236
11.0 Introduction
11.1 Objectives

11.2 Multiple Document Interface (MDI) Forms
11.2.1 Accessing Child Forms
11.2.2 Adding, Loading and Unloading Forms

11.3 Answers to Check Your Progress Questions
11.4 Summery
11.5 Key Words
11.6 Self-Assessment Questions and Exercises
11.7 Further Readings

BLOCK IV: DATA ACCESS OBJECT (DAO) AND PROPERTIES

UNIT 12 DATA ACCESS OBJECT (DAO) AND PROPERTIES 237-254
12.0 Introduction
12.1 Objectives
12.2 Data Access Object (DAO)
12.3 Accessing Data Through Transaction Method
12.4 Answers to Check Your Progress Questions
12.5 Summary
12.6 Key Words
12.7 Self-Assessment Questions and Exercises
12.8 Further Readings

UNIT 13 ACTIVE DATA OBJECTS (ADO) AND ADO PRIMER 255-276
13.0 Introduction
13.1 Objectives
13.2 Active Data Objects (ADO): An Introduction
13.3 Answers to Check Your Progress Questions
13.4 Summary
13.5 Key Words
13.6 Self-Assessment Questions and Exercises
13.7 Further Readings

UNIT 14 CONNECTING TO THE DATABASE 277-308
14.0 Introduction
14.1 Objectives
14.2 Database Connectivity
14.3 Retrieving a Recordset

14.3.1 What is Data Provider?
14.3.2 What is OLE DB?
14.3.3 Accessing Database using ADO Control

14.4 Working with Queries
14.4.1 Parameterized Queries
14.4.2 Action Query

14.5 Adding Records and Editing Records
14.5.1 ADO: Adding a Record to a Record Set
14.5.2 ADO: Editing a Record in a Record Set

14.6 Closing the Database Connection
14.7 Answers to Check Your Progress Questions
14.8 Summary
14.9 Key Words

14.10 Self-Assessment Questions and Exercises
14.11 Further Readings

Introduction

NOTES

Self-Instructional
8 Material

INTRODUCTION

Visual Basic (VB) is a third generation event driven programming language from
Microsoft known for its Component Object Model (COM) programming model
first released in 1991 and declared legacy during 2008. Microsoft’s extended
support ended in March 2008 and the designated successor was Visual Basic.NET
now acknowledged simply as Visual Basic.

Microsoft intended Visual Basic to be relatively easy to learn and use. Visual
Basic was derived from BASIC (Beginners’ All-purpose Symbolic Instruction
Code) and enables the Rapid Application Development (RAD) of Graphical User
Interface (GUI) applications, access to databases using Data Access Objects
(DAO), Remote Data Objects (RDO), or ActiveX Data Objects (ADO), and
creation of ActiveX controls and objects. A programmer can create an application
using the components provided by the Visual Basic program itself. Programs written
in Visual Basic can also make use of the Windows API, which requires external
functions declarations.

This book, Visual Basic Programming, is divided into five blocks, which
are further subdivided into fourteen units. This book provides a basic understanding
of the subject and helps to grasp its fundamentals. In a nutshell, it explains various
aspects, such as Visual Basic concepts, introduction to GUI, working with Forms,
Properties Window, Toolbox, Toolbars, working with Projects, programming
structure of Visual Basic Applications, event and event driven procedures, program
design, writing the code, using Literals Data Types, declaring and using Variables,
using the Operator Subroutines and Functions, looping and decision control
structures, intrinsic Visual Basic controls with methods and properties, creating
procedures, functions, string functions, date and time function, numeric functions,
recursive functions, arrays, indexing and event handling, graphics, Menus and MDI
Forms, Active Data Objects (ADO) and properties.

The book follows the Self-Instructional Mode (SIM) wherein each unit
begins with an ‘Introduction’ to the topic. The ‘Objectives’ are then outlined before
going on to the presentation of the detailed content in a simple and structured
format. ‘Check Your Progress’ questions are provided at regular intervals to test
the student’s understanding of the subject. ‘Answers to Check Your Progress
Questions’, a ‘Summary’, a list of ‘Key Words’, and a set of ‘Self-Assessment
Questions and Exercises’ are provided at the end of each unit for effective
recapitulation. This book provides a good learning platform to the people who
need to be skilled in the area of operating system functions. Logically arranged
topics, relevant examples and illustrations have been included for better
understanding of the topics and for effective recapitulation.

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 1

BLOCK I
VISUAL BASIC CONCEPTS

UNIT 1 INTRODUCTION TO
GRAPHICAL USER
INTERFACE

1.0 Introduction
1.1 Objectives
1.2 Visual Basic

1.2.1 Features of Visual Basic
1.2.2 Visual Basic 6.0 Versus Earlier Versions of Visual Basic
1.2.3 Event-Driven Programming
1.2.4 Properties, Methods and Events
1.2.5 Getting Started with Visual Basic 6.

1.3 Understanding Visual Basic Projetcs
1.3.1 Visual Basic Environment (Integrated Development Environment)
1.3.2 Visual Basic Program Development Process
1.3.3 Opening/Saving Running a Visual Basic Project

1.4 Answers to Check Your Progress Questions
1.5 Summary
1.6 Key Words
1.7 Self-Assessment Questions and Exercises
1.8 Further Readings

1.0 INTRODUCTION

Visual Basic (VB) is a programming language for developing sophisticated
professional applications for Microsoft Windows. It utilizes a Graphical User
Interface (GUI) to create powerful applications. The use of illustrations for text by
GUI helps users in interacting with an application. This feature helps in easy and
quick comprehension. The VB programming language is event driven and
programming takes place in a graphical environment, whereas in its previous version,
BASIC, programming occurs in a text only environment which is sequentially
executed for controlling user interface. VB is an attractive tool to work with because
of features, such as faster application development, easier comprehension, user-
friendliness, and Internet and ActiveX technology. VB programming language

combines event driven and object-oriented programming that supports GUI effects.

Visual Basic is an event driven programming language. The ‘Visual’ part
refers to the method used to create the Graphical User Interface (GUI).

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
2 Material

The “Basic” part refers to the BASIC language that is used by most of the
programmers in the history of computing. Visual Basic has evolved from the BASIC
language and now contains several hundred statements, functions and keywords,
many of which are directly related to the Windows GUI. Visual Basic allows
professionals to implement anything that can be implemented using any other
Windows programming language. The Visual Basic programming language is not
unique to Visual Basic. The Visual Basic programming system, Applications Edition
included in Microsoft Excel, Microsoft Access and many other Windows
applications use the same language. The Visual Basic programming system,
Scripting Edition (VBScript) for Internet programming is a subset of the Visual
Basic language. The effort you make in learning Visual Basic will carry over to
these other areas.

In this unit, you will study about the starting and exiting Visual Basic project
explorer and working with Forms properties Windows.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 Know about Visual Basic

 Understand the Visual Basic Projects

 Elaborate on the Features of Visual Basic

 Explain about the Visual Basic environment

 Define the basic terms used in Visual Basic

 Able to open/save and run a Visual Basic Project

1.2 VISUAL BASIC

Visual Basic is a third-generation event driven programming language from
Microsoft known for its Component Object Model (COM) .Programming model
first released in 1991 and declared legacy during 2008. Microsoft intended Visual
Basic to be relatively easy to learn and use. Visual Basic was derived from BASIC
and enables the Rapid Application Development (RAD) of Graphical User Interface
(GUI) applications, access to databases using Data Access Objects (DAO),
Remote Data Objects (RDO), or ActiveX Data Objects (ADO), and creation of
ActiveX controls and objects.

1.2.1 Features of Visual Basic

The Visual Basic (VB) programming environment provides all the features that are
required to develop a Graphical User Interface (GUI). Some important ones are
listed below:

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 3

1. It is the successor of BASIC ‘Beginner’ ALL-Purpose Symbolic Instruction
Code).

2. It provides a common programming platform across all MS-Office
applications.

3. It offers many tools that provide a quick and easy way to develop an
application.

4. It also provides many wizards that can automate tasks or even automate
coding.

5. It supports ActiveX Control, with which you can create your own ActiveX
control and use it in your application.

6. It has an n-tier architecture.

7. It offers quick error detection/correction.

8. It comes with a full set of objects for ‘Drawing’ the application.
9. It responds to the action of the mouse and the keyboard.

10. It has access to the clipboard and printer.

11. It comes with a full array of string handling, mathematical and graphics
functions.

12. It can handle dynamic and fixed variables and control arrays.

13. It supports sequential and random access files.

14. It has powerful tools for database access.

15. It has a package and deployment wizard to make distribution of applications
easy.

1.2.2 Visual Basic 6.0 versus Earlier Versions of Visual Basic

The original Visual Basic for DOS (Disk Operating System) and Visual Basic for
Windows were introduced in 1991.

Visual Basic 3.0, an improved version, was released in 1993.

Visual Basic 4.0 added 32-bit application support and was released in late 1995.

Visual Basic 5.0 was released in late 1996. It supported the creation of ActiveX
controls, provided a new environment and deleted 16-bit application support.

Visual Basic 6.0 was released in mid-1998. Its new features are:

 New ActiveX data control object

 Faster compiler

 Integration of database with large variety of applications

 New package and deployment wizard

 New data report designer

 Additional Internet capabilities

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
4 Material

Visual Basic 3.0 was a powerful language but it was reasonably small. The
addition of classes to the language in Visual Basic 4.0 made it much more complex.
Though more support for database programming and other topics like custom
controls in Versions 4.0, 5.0 and 6.0 made it even more complex, Visual Basic
remained an easy to understand language.

Visual Basic .NET speeded up the expansion of Visual Basic immensely.
The .NET framework added various powerful new tools. Various allied technologies
have been added to the language. Today, it is not possible for anyone to be an
expert on each topic dealing with Visual Basic (VB).

Its system requirements are dependent on the version of the software. Visual
Basic 6.0 for Windows requires Microsoft Windows 95/Windows NT 3.51, a
486 processor and a minimum RAM of 16 MB. The Enterprise Edition, the most
powerful version of Visual Basic 6.0, requires more than 250 MB of hard disk
space for a complete installation.

1.2.3 Event Driven Programming

In a VB project, the occurring processes have to be associated with events. An
event is something that occurs when button being clicked by the user or a form
being opened. The operation is driven by event because every execution is a
result of some event. The programmer role is to anticipate the events and to write
the code for execution during the occurrence of the event. A VB application is
interactive because of the constant interaction of the user with the program. VB
programs are built around events, which are different incidents that can occur in a
program. This will become clearer when VB is compared to procedural
programming. In procedural languages, an application is written and executed by
a logical checking of the program through the program statements, one after another.
The control can be transferred to some other point in a program on a temporary
basis. In applications that are event-driven, the execution of the program statements
occurs only when a certain event calls a particular part of the code assigned to it.

We can look at a TextBox control and a few of its related events to
understand the concept of event-driven programming. The TextBox control
supports several events, such as Change, Click, MouseMove and others, that will
be listed in the drop-down list of Properties in the code window for the TextBox
control. Let us look at a few of them:

 The code entered in the Change event fires in case of a change in the contents
of the TextBox.

 The Click event fires when the TextBox control is clicked.

 The MouseMove event fires when the mouse is moved over the TextBox.

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 5

1.2.4 Properties, Methods and Events

Put simply, objects are described by properties. Methods make an object do
something. Events are what occur when something is done by an object. Every
object, like control or a form, has certain properties describing it. This set is not
equal for all objects.

1.2.5 Getting Started with Visual Basic 6.0

Visual Basic 6.0 (VB 6.0) was released in mid-1998. It is started either by clicking
the VB icon or Programs Microsoft -VB 6.0 VB 6.0. After clicking the VB
icon, a new screen is opened to users- friendly with additional features, such as
MenuBar, ToolBar and the New Project dialog box. The interface elements facilitate
the user to develop enhanced VB 6.0 in associated windows with the project
providing single container, popularly known as the parent. The main container
form contains code and form-based windows. Getting started with Visual Basic
6.0 (VB 6.0) provides additional features, for example, Project Explorer, Properties
Windows and Object Browser. Basically, VB 6.0 for Windows requires Microsoft
Windows 95/Windows NT 3.51, a 486 processor and a minimum RAM of 16
MB. The Enterprise Edition, the most powerful version of VB 6.0, requires more
than 250 MB of hard disk space for a complete installation.

The Project Explorer window provides forms, classes and modules
collectively in a group as elements to the programmer. In fact, a sample project
typically contains one form, where as a program might contain single form. It
contains the Properties Window that exposes the various characteristics, for
example, window color and size, but the characteristics and elements are considered
as objects. The form contains properties and controls. The Object Browser
facilitates user to browse the properties, events and methods. This browser can
be selected either by pressing the function key [F2] from the keyboard or from
View menu.

Its new features are as follows:

 New ActiveX data control object

 Fast compiler

 Integration of database with large variety of applications

 New package and deployment wizard

 New data report designer

 Additional Internet capabilities

You can start VB 6.0 by the following three steps:

Click at Program Microsoft VB Studio Microsoft VB6.0

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
6 Material

Check Your Progress

1. What is Visual Basic?

2. Which type of applications can be developed using Visual Basic?

3. Explain the features of Visual Basic.

4. List out the different versions of Visual Basic.

5. Which is the most powerful version of VB?

6. Explain about the event in Visual Basic.

7. Elaborate on the TextBox events.

8. Write down the steps for starting Visual Basic (VB) 6.0.

1.3 UNDERSTANDING VISUAL BASIC PROJETCS

For opening aVisual Basic (VB) environment and working with it, select and click
on MicrosoftVisual Basic 6.0 in the start menu. After VB is loaded, the New Project
dialog, shown in Figure 1.1, will be displayed with the types available in VB. You
can see thatStandard Exe is highlighted by default.Standard Exe helps the user in
creating a standard executable. Standard executable is a category that has most of
the common features of VB.

A project in VB is a collection of several types of files that make up your
program. An application is the final program that is used by people.

Fig. 1.1 The Visual Basic Startup Dialog Box

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 7

Visual Basic Project

Various types of projects that you can create are listed in Table 1.1 as follows:

Table 1.1 Different Types of Projects Supported by Visual Basic 6.0

Project Name Description

1 Standard EXE For creating a stand alone application.

2 ActiveX EXE For creating an ActiveX executable component
that can be executed from other applications.

3 ActiveX DLL For creating ActiveX dynamic link library.

4 ActiveX Control For creating your own ActiveX control. An
ActiveX control is a basic element of user
interface. For Example, a TextBox or a command
button, etc.

5 VB Application Wizard For setting up the skeleton of a new application.

6 VB Wizard Manager For collecting information from the user. After
the user fills out all the required information, the
wizard proceeds to carry out a specified task.

7 Data Project For creating a data project, which is a
combination of standard EXE project and
various data access controls.

8 Internet Information For creating an Internal Information Server (IIS)
application that can run on a Web

Server (IIS) Application server.

9 Add In For creating your own Add in for the Visual
Basic Integrated Development Environment
(VBIDE).

10 ActiveX Document DLL For creating ActiveX documents in DLL form.

11 ActiveX Document EXE For creating ActiveX documents in EXE form.

12 DHTML Application For building dynamic HTML pages.

1.3.1 Visual Basic Environment (Integrated Development
Environment)

The working environment in Visual Basic (VB) incorporates several different
functions such as editing, designing, compiling and debugging within a common
environment. For this reason, the working environment of VB is also referred to
as Integrated Development Environment (IDE) as shown in Figure 1.2.

To start up VB, you need to follow these steps:

1. Click at Start button.

2. Click at Program Microsoft Visual Basic Studio Microsoft
VB 6.0

This will open a New Project dialog box, as shown in Figure 1.1, which is
the startup dialog box. From this dialog box, you can select the desired project

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
8 Material

type. When you select, for example, a Standard EXE from the New Project
dialog box, VB starts a new project and shows the screen as shown in Figure 1.2.
The following screenshot shows the involvement of Integrated Development
Environment (IDE) in Visual Basic.

Fig. 1.2 A Standard EXE Project

Elements of VB IDE

The Visual Basic Integrated Development Environment (VB IDE) consists of the
following elements:

Title Bar: It is the topmost bar displaying the title of the project .The
window titled Project 1 is the name of project containing the project files.

Form: It is the main feature of the VB application; it is the ‘Window’ or
‘Screen’ that users interact with. It can be considered as a ‘Canvas’ on which the
user places the objects that form an application. When a new project is started,
VB automatically supplies one form to work with; more forms can be added as
the need arises. Forms are used to display things, such as TextBox, Label,
CommandButton, Graphics, and so on.

Toolbox Window: It has a set of controls used for customizing forms.
These controls help the user in creating an interface between the user and the
application.

Properties Window: It helps in changing the property settings or
characteristics of the form itself and also the elements of visual interface on the
form. There are two columns in the Properties window: the first is the property
name that cannot be changed and the second is the setting of the property that can
be changed.

Project Explorer or Project Window: It shows the list of forms and
modules in a project. A VB Project Explorerconsists of a number of forms, modules
and controls that make up an application.

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 9

Form Layout Window: It shows how big a form is in relation to the screen.
It also displays the position of the window where it will be displayed when the
project is run.

Code Editor Window: It is the place for writing VB code for your
application. By code we mean language statements, declarations and constants.
For entering application code, the code editor window serves as an editor. A
separate code editor window is created for each form or control that you create in
your application. With the use of the code editor window, any code in the application
can be quickly viewed and edited.

PictureBox

TextBox
CommandButton

OptionButton
ListBox

VScrollBar
DriveListBox

FileListBox

Line
Data

Pointer
Label

Frame
CheckBox

HScrollBar

Timer
DirListBox

Shape
Image

OLE

Fig. 1.3 (a) Toolbox Window Fig. 1.3 (b) Properties Window

View code

View object

Toggle folders

Project name

Forms folder

Form module

Project . Project1

Fig. 1.3 (c) Project Window

The following is a list of common controls with their description:

Table 1.2 Different Types of Intrinsic Controls and their Description

Control Description

Pointer Used for interacting with the controls on the form

PictureBox Used for displaying images

TextBox Used for accepting user input that can display only editable text

Frame Used for grouping other controls

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
10 Material

CommandButton Used for initiating an action by pressing on the button

CheckBox Used for making a choice for user (checked or unchecked)

OptionButton Used in groups where one at a time can be true

ListBox Used for providing a list of items

ComboBox Used for providing a short list of items

HScrollBar Used to scroll horizontally

VScrollBar Used to scroll vertically

Timer Used for performing tasks at particular intervals

DriveListBox Used for accessing the system drives

DirListBox Used for accessing the directories on the system

FileListBox Used for accessing the files in the directory

Shape Used for drawing circles, squares, rectangles, ellipses

Line Used for drawing lines

Image Used for displaying images but has less capability than
the PictureBox

Data Used for connecting a database

OLE Used for interacting with other application of Windows

Label Used for display texts that cannot be edited

VB IDE Modes

A VB application works in either of the following three modes:

 Design Mode

 Run Mode

 Break/Suspended Mode

While an application is being created or designed, it is in the design mode.
When the application is executing, it is said to be in the run mode. And while an
application is in a state of suspension, it is said to be in the break mode.

Definition of Basic Terms

Application: An application is an assortment of objects that work together for
accomplishing something useful. The application in VB is calledProject. A project
could be calculation of mortgages, management of a video store, the payroll for
1000 employees or a dating service.

Object: An object is a part of software with properties and functions that can be
changed. A window is an object with properties like color, size, position on the
screen, etc. The function of a window, also known asmethods, can be manipulated,
move it around, change the size, open it and close it. There is no need for writing the
code for resizing a window. Clicking and dragging will do. The code was written by
somebody and put together in a small package called window object. Whenever
there is a need of a window in a project, the window object can be copied and
pasted wherever it is needed by changing its properties for color or size very easily.
Its built-in methods can be used for opening and closing it or for resizing it whenever

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 11

required. When an application is created using objects and combining them for
producing results, it means the user is working in an object-oriented environment.

Help Topics Dialog Box: The new Help Topics Dialog Box is the ‘Way in’ to
help information in an application. To invoke the Help Dialog Box, choose the
content command from the Help menu. It provides three tabs to help the user to
find the required information. The information displayed on these tabs is totally
dependent on the way the Help topic files and the content file are created. Each
tab has its own unique features.

Contents Tab: This helps in displaying the help topics by title in the categories
set up by you. Jumps to topics as well as the capability of running macros can be
created in other Help files. Additionally, the Contents tab topics can be
automatically updated whenever the latest release of the application is installed on
the PC of the user. Jumps to topics or macros are displayed as page icons, while
headings are displayed as book icons on the display.

Index Tab: The old WinHelp 3.1 Search Dialog Box has been changed
and replaced by the Index tab. The Index tab provides you the capability of looking
for topics based on the keywords that you add to your Help file. These keywords
are then sorted automatically from A to Z and any second-level entry is indented.

Find Tab: This is used for searching the help file for topics containing a
particular word or phrase that has been specified in the top input box on the tab.
The distinctive feature of the Find tab is that the word list the Find tab works on is
created when the user clicks the Find tab. This means that there is no need of
building and sending a large word list files on the program disks for this to work.

1.3.2 Visual Basic Program Development Process

Generally, the following steps are required for building a VB application:

Step 1: Designing the Interface

Step 2: Setting Properties of the Controls (Objects)

Step 3: Writing the Procedures of the Events

Step1: Designing the Interface

In our first example, there is a need of 6 Labels and 2 Command buttons. These
objects that are put on a Form are called controls. For getting a control, go to the
Toolbox, then click on the control you need, return to the Form and click and
drag the control to the size and position you want. Position the controls as in the
following diagram:

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
12 Material

Fig. 1.4 Visual Basic IDE

We can make the bunch of controls on the form more attractive by changing
the Properties of the controls in the Properties Window. Each control has a
whole series of properties. But right now, we only need the following ones:

Alignment = How text aligns in the control

BackColor = The color of the background

Caption = The text that will appear in the control

Font = The font type and size

ForeColor = The color of the text (foreground)

Just as in all Windows applications, you can select multiple controls with
(Ctrl)+(Click) for changing a property for all of them at once. For instance, if
there are all white backgrounds, select all controls, change ForeColor to white
and all of them will be modified. Change the form to look like the one below. Note
that there is no need to change the captions for Label4, Label5 and Label6 and
the color of the buttons cannot be changed. The color of the buttons is what was
earlier called ‘IBM Grey’. Remember to save your project as often as you can.

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 13

Step 2: Setting Properties of the Controls (Objects)

Fig. 1.5 Design Mode

Fig. 1.6 Final Display

At this point, if you Run the application, your Form will appear just the way
it was created. However, absolutely nothing happens if you click on any of the
controls. Some events occur; the form opens, a button is clicked, etc. But nothing
tells the form what should be done when it sees an event. This is the reason that we
have to write code, which is also known as script.

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
14 Material

Fig. 1.7 (a) Project Explorer Window Fig. 1.7(b) Code Editor Window

For switching between the Code window and the Form window, the buttons
just over the Project Explorer window [(Figure 1.7 (a)].

Once you are in the Code window, you can see all the codes for the project
or the code for one event at a time. Use the buttons in the lower left-hand corner
(Figure 1.7 (b)).

For selecting the object and the event you want to code, use the two List
boxes given at the top of the Code window: the left button is for the object and the
right button is for the event. Start with General ... Declarations and then Form
... Load, etc.

Step 3: Write the Procedures of the Events

Fig. 1.8 Showing the Code

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 15

Fig. 1.9 Showing the Code of Form_Load Event

Now we can Run it and find something happening. When the Form loads,
it will initialize the fields that were specified in the code.

1.3.3 Opening/Saving Running a Visual Basic Project

Creating and Saving a New Program

1. Start VB from the Windows start menu.

The large VB window appears with a New Project dialog box (as shown
in Figure 1.1). (In case there is no dialog box, bring it up through File >
New Project).

Select Standard Exe. The VB window will show Project1 with an empty
Form1 (as shown in Figure 1.2).

2. Name the project.

Select Project Project1 Properties. In the Project Properties dialog
box, change Project1 to your project name, say Sample.

The title bar on the VB window changes to match.

3. Name the form and set the form caption.

The Properties window at the right side of the VB window shows the
properties for the form. The first property at the top of the list is Name.
Change the name to, say frmSample1.

The title bar in the Form window changes to match as shown in Figure
1.10.

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
16 Material

Fig. 1.10 Showing Change in the Title Bar

Scroll down to Caption still remaining in the Properties window. Rename
the caption with the same name as the project, say Sample.

The title bar on the form will change automatically to match.

4. Save the form (you should always name and save the form before you save
the project).

Select File Save frmSample1 As The Save File As and the Save
Project As dialog boxes appear (as shown in Figures 1.11 and 1.12
respectively). The Save in textbox shows the folder’s name where the
form will be saved. The form file name frmSample1.frm should appear in
the File name box (if not, type in the correct name). Click on Save.

Fig. 1.11 Save File as Dialog Box (to save form file as frmSample1.frm)

The form is saved.

5. Save the project (be sure to name and save the form before you save the
project).

Select File Save Project As The Save Project As dialog box
appears (Figure 1.12). The Save in TextBox should show the correct folder
(the one you just created for the form). The File name box should show
the correct name (Sample.vbp in this example). Click on Save.

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 17

Fig. 1.12 Save Project as Dialog Box (to save project file as Sample.vbp)

The project is saved.

After naming and saving the form and the project, it is better to exit and then
restart VB for making sure that the project can be restored before investing
a lot of work in it.

Restoring/Opening an Existing Program

1. Start VB.

Find Visual Basic on the Windows Start menu and start it.

The large VB window appears with a New Project dialog box. Choose
the Existing tab (as shown in Figure 1.13). If there is no dialog box, bring
it up by File > Open Project.

Fig. 1.13 New Project Dialog Box (to choose the Existing Project)

Navigate to the folder that was created earlier. There will be a .vbp file for
the project created earlier (Sample.vbp in this example). Select that file.

Alternatively, for navigating to the project folder, you can use My Computer
or Windows Explorer instead of the Start menu. The VB starts and opens
that project when the .vbp file or the .frm file is double clicked.

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
18 Material

The restored project appears in the VB window. The project name appears
in the title bar.

2. Open the form.

An icon for a folder of forms appears in the Project window on the right
side of the VB window. Open this folder and select the form you saved.
Click on the View Code and View Object icons for displaying the code or
form layout windows.

Now you are ready to add controls and code to the form. At any time, you
can use File > Save frmSample1 and File > Save Project to save your
changes to the form and the project without going through the Save As ...
dialog.

Running the Program

There are various ways of running your program:

 Press the F5 key.

 On the VB menu bar, go to Run and click Start (Run > Start).

 On the VB toolbar, click the VB Run icon (the arrow).

The program window appears and looks similar to the form that was
designed. The window controls are active. The program behaves like any other
window on the desktop while it is running; you can minimize it, move it, etc.

Fig. 1.14 Output of Sample Program

From the design mode, the indicator on the Visual Basic (VB) window
title bar changes to the run mode. Several items in the VB window disappear
during the run mode and several menu and ToolBar operations are not enabled.

Stopping the Program

There are various ways of stopping your program:

 In the window of your program, click the Exit button or menu (if you are
provided one).

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 19

 In the title bar of your program window, click the Close button (VB always
provides one).

 On the VB menu bar, go to Run and click Stop (Run > Stop).

 On the VB toolbar, click the VB Stop icon (the box).

From the run mode, the indicator on the VB window title bar changes to
the design mode. Items in the VB window reappear, and menu and toolbar
operations are enabled again.

Examining the Program in the Break Mode

As the program runs, there are several ways of put VB in the break mode:

 On the VB menu bar, go to Run and click Break (Run > Break).

 On the VB toolbar, click the Break icon (the vertical bars).

 Your program reaches a breakpoint or experiences an error.

Printing Visual Basic Project

Surprisingly, there is no Printer control. Unlike most of the things in VB, sending
output to the printer can be a tiresome process. It requires sending a long list of
instructions to the printer describing exactly the way the output should look like.

Despite the problems sometimes faced with printing, you can easily learn to
control all the aspects of printing that include the font of individual characters that
is sent by the application to the printer. The control needed for printing provides
accuracy and it lets you control all the printing details.

Exiting Visual Basic

The following are the ways to exit VB:

 On the menu bar, go the File and click Exit (File > Exit).

 On the VB window title bar, click the Close button.

VB will give you a warning if you have forgotten to save your work.

Check Your Progress

9. Give the definition of project in Visual Basic (VB).

10. What is the full form of IDE?

11. Which window displays all forms and modules of the required application?

12. In which window we can write code?

13. In How many modes a VB application can work?

14. Explain the steps required for the Visual Basic application.

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
20 Material

1.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Visual Basic is a third-generation event driven programming language from
Microsoft known for its Component Object Model (COM).

2. Graphical User Interface (GUI) applications are developed in Visual Basic.

3. Following are the features of Visual Basic :

 It provides a common programming platform across all MS-Office
applications.

 It offers many tools that provide a quick and easy way to develop an
application.

 It also provides many wizards that can automate tasks or even automate
coding.

 It supports ActiveX Control, with which you can create your own ActiveX
control and use it in your application.

 It has an n-tier architecture.

 It offers quick error detection/correction.

 It comes with a full set of objects for ‘Drawing’ the application.
 It responds to the action of the mouse and the keyboard.

 It has access to the clipboard and printer.

 It comes with a full array of string handling, mathematical and graphics
functions.

 It can handle dynamic and fixed variables and control arrays.

 It supports sequential and random access files.

 It has powerful tools for database access.

 It has a package and deployment wizard to make distribution of
applications easy.

4. There were a total of six different versions of Visual Basic released (1.0,
1.0 for MS-DOS, 2.0, 3.0, 4.0, 5.0, and 6.0). The last version of Visual
Basic, version 6.0 was released in 1998. After Visual Basic 6.0, Microsoft
moved Visual Basic to the. NET Framework.

5. The Enterprise Edition is the most powerful version of VB 6.0.

6. An event is something that occurs when button being clicked by the user or
a form being opened. The operation is driven by event because every
execution is a result of some event.

7. The TextBox control supports several events, such as Change, Click,
MouseMove and others, that will be listed in the drop-down list of Properties
in the code window for the TextBox control.

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 21

8. You can start VB 6.0 by the following three steps:

Click at Program Microsoft VB Studio Microsoft VB6.0

9. A project in VB is a collection of several types of files that make up your
program. An application is the final program that is used by people.

10. The full form of IDE is Integrated Development Environment.

11. Project window displays all forms and modules of the required application?

12. In Code editor window we can write code.

13. A Visual Basic application works in Design mode, Run mode and Break/
Suspended mode.

14. Generally, the following steps are required for building a VB application:

Step 1: Designing the interface

Step 2: Setting properties of the controls (objects)

Step 3: Writing the procedures of the events

1.5 SUMMARY

 The Visual Basic (VB) programming environment provides all the features
that are required to develop a graphical user interface.

 It provides a common programming platform across all MS-Office
applications.

 It offers many tools that provide a quick and easy way to develop an
application.

 It supports ActiveX Control, with which you can create your own ActiveX
control and use it in your application.

 It has a package and deployment wizard to make distribution of applications
easy.

 The original Visual Basic for Disk Operating System (DOS) and Visual
Basic for Windows were introduced in 1991.

 Visual Basic 3.0 was a powerful language but it was reasonably small.

 The addition of classes to the language in Visual Basic 4.0 made it much
more complex.

 Though more support for database programming and other topics like custom
controls in Versions 4.0, 5.0 and 6.0 made it even more complex, Visual
Basic remained an easy to understand language.

 Visual Basic .NET speeded up the expansion of Visual Basic immensely.
The .NET framework added various powerful new tools.

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
22 Material

 Visual Basic 6.0 for Windows requires Microsoft Windows 95/Windows
NT 3.51, a 486 processor and a minimum RAM of 16 MB.

 In a VB project, the occurring processes have to be associated with events.

 An event is something that occurs when button being clicked by the user or
a form being opened. The operation is driven by event because every
execution is a result of some event.

 TheTextBox control supports several events, such as Change, Click, Mouse
Move and others that will be listed in the drop-down list of Properties in the
code window for the TextBox control.

 The code entered in the Change event fires in case of a change in the contents
of the TextBox.

 Methods make an object do something. Events are what occur when
something is done by an object.

 VB 6.0 was released in mid-1998. It is started either by clicking the VB
icon or Programs Microsoft -VB 6.0 VB 6.0.

 The Project Explorer window provides forms, classes and modules
collectively in a group as elements to the programmer.

 For opening a VB environment and working with it, select and click on
Microsoft Visual Basic 6.0 in the start menu.

 A project in VB is a collection of several types of files that make up your
program. An application is the final program that is used by people.

 The working environment in VB incorporates several different functions
such as editing, designing, compiling and debugging within a common
environment.

 TitleBar is the topmost bar displaying the title of the project.

 Form is the main feature of the VB application; it is the ‘Window’ or ‘Screen’
that users interact with. It can be considered as a ‘Canvas’ on which the
user places the objects that form an application.

 ToolBox window has a set of controls used for customizing forms. These
controls help the user in creating an interface between the user and the
application.

 Properties window helps in changing the property settings or characteristics
of the form itself and also the elements of visual interface on the form. There
are two columns in the Properties window: the first is the property name
that cannot be changed and the second is the setting of the property that
can be changed.

 Project explorer or project window shows the list of forms and modules in
a project. A VB Project Explorer consists of a number of forms, modules
and controls that make up an application.

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 23

 Form layout window shows how big a form is in relation to the screen. It
also displays the position of the window where it will be displayed when the
project is run.

 Code editor window is the place for writing VB code for your application.
By code we mean language statements, declarations and constants. For
entering application code, the code editor window serves as an editor.

 While an application is being created or designed, it is in the design mode.
When the application is executing, it is said to be in the run mode.

 An application is an assortment of objects that work together for
accomplishing something useful. The application in VB is called Project. A
project could be calculation of mortgages, management of a video store,
the payroll for 1000 employees or a dating service.

 An object is a part of software with properties and functions that can be
changed. A window is an object with properties like color, size, position on
the screen, etc. The function of a window, also known as methods.

 The code was written by somebody and put together in a small package
called window object.

 The new Help Topics dialog box is the ‘Way In’ to Help information in an
application. To invoke the Help dialog box, choose the content command
from the Help menu.

 Contents tab helps in displaying the Help topics by title in the categories set
up by you. Jumps to topics as well as the capability of running macros can
be created in other Help files.

 We can make the bunch of controls on the form more attractive by changing
the Properties of the controls in the Properties window.

 The program window appears and looks similar to the form that was
designed. The window controls are active. The program behaves like any
other window on the desktop while it is running; you can minimize it, move
it, etc.

 From the design mode, the indicator on the Visual Basic (VB) window title
bar changes to the run mode. Several items in the VB window disappear
during the run mode and several menu and toolbar operations are not enabled.

 From the run mode, the indicator on the VB window title bar changes to the
design mode. Items in the VB window reappear, and menu and toolbar
operations are enabled again.

 Surprisingly, there is no Printer control. Unlike most of the things in VB,
sending output the printer can be a tiresome process. It requires sending a
long list of instructions to the printer describing exactly the way the output
should look like.

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
24 Material

 Despite the problems sometimes faced with printing, you can easily learn to
control all the aspects of printing that include the font of individual characters
that is sent by the application to the printer.

 The control needed for printing provides accuracy and it lets you control all
the printing details.

1.6 KEY WORDS

 Application: A collection of objects that work together to accomplish
something useful. In VB, the application is called Project.

 Object: A piece of software that has properties and functions that can be
manipulated.

 Title bar: The topmost bar displaying the title of the project.

 Form: The heart of a VB application; it is the ‘Screen’ or ‘Window’ that
the users interact with.

 Properties window: The window which lets the user change the
characteristics or the property settings of the form itself as well as of the
visual interface elements on the form.

 Project explorer or project window: The window which shows the list of
forms and modules in a project.

 Form layout window: The window which shows how big a form is in
relation to the screen.

 Code editor windows: The window where the VB code is written for an
application.

1.7 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Explain about the Visual Basic IDE.

2. Describe any four features of Visual Basic.

3. Explain about the properties and methods.

4. Visual Basic was developed in which year?

5. State about the new features of Visual Basic 6.0.

6. What is Standard EXE?

7. Name the different types of projects that can be created in VB.

8. Why we use ActiveX Control?

9. Define the term Object.

Introduction to
Graphical user

Interface

NOTES

Self-Instructional
Material 25

Long-Answer Questions

1. Discuss about the Project in VB 6.0? How many types of project’s are
there in Visual Basic? Explain each of them briefly.

2. Analyse about the Visual Basic IDE?

3. Discuss about the Visual Basic development process in detail.

4. Explain how to opening, saving and running the Visual Basic Project.

5. Elaborate briefly on the opening an existing program in Visual Basic.

6. Create the simple Hello World application in Visual Basic working
environment. Giving code and output.

7. Briefly describe each of the following IDE features:

a. Toolbox

b. Form

c. ToolBox Window

d. Explorer window

1.8 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Introduction to
Graphical user
Interface

NOTES

Self-Instructional
26 Material

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Using the Toolbox

NOTES

Self-Instructional
Material 27

UNIT 2 USING THE TOOLBOX
2.0 Introduction
2.1 Objectives
2.2 Working with Toolbar
2.3 Use of the Toolbox
2.4 Project Programming Structure in Visual Basic Application
2.5 Event and Event Driven Procedures
2.6 Answers to Check Your Progress Questions
2.7 Summary
2.8 Key Words
2.9 Self-Assessment Questions and Exercises

2.10 Further Readings

2.0 INTRODUCTION

The Toolbox window displays controls that you can add to Visual Studio projects.
To customize the Toolbox by adding pages to it or by adding controls by using the
Additional Controls command from the Tools menu.

In Visual Basic (VB) Toolbox is a palette of controls CommandButtons,
CheckBox, TextBox, ListBox, and ComboBox that can be dragged-and dropped
onto a user form. For VB, to make the Toolbox available, form must have open in
design mode. Toolbox appears in conjunction with designer views, such as the
designer view of a XAML file or a Windows Forms App project. Toolbox displays
only those controls that can be used in the current design mode.

A toolbar is a bar that displays in the top section under the main menu. A
toolbar is a classic control container. It can host text, buttons, etc. No Windows
application would truly be complete without at least one toolbar. Toolbars provide
a quick way for users to perform tasks without having to navigate the application’s
menu system. Toolbars are referred to as toolStrips in Visual Basic.

A Visual Basic program is built up from standard building blocks. A project in
turn can contain one or more assemblies. Each assembly is compiled from one or
more source files. A source file provides the definition and implementation of classes,
structures, modules, and interfaces, which ultimately contain all the VB code.

An event is an action or occurrence recognized by software, often
originating asynchronously from the external environment, that may be handled by
the software. Event driven programming is when a program is designed to respond
to user engagement in various forms. It is known as a programming paradigm in
which the flow of program execution is determined by ‘Events’. Events are any
user interaction, such as a click or key press, in response to prompt from the
system. In Visual Basic event procedure is a procedure that executes on a specific
event, such as click button event or action by a Visual Basic (VB) object.

Using the Toolbox

NOTES

Self-Instructional
28 Material

In this unit, you will study about the toolbar, toolbox, project programming
structure of Visual Basic application, event and event driven procedures in Visual
Basic.

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Learn about the basic structure of Visual Basic program

 Understand the Visual Basic Projects

 Able to work with toolbox

 Explain about the Visual Basic environment

 Define the term event and event driven procedure

2.2 WORKING WITH TOOLBAR

A ‘Toolbar’ is a bar that displays in the top section under the main menu. Following
are the screenshot.

A toolbar is a classic control container. It can host text, buttons, etc. It is up
to you to decide whether your application needs a toolbar and what you want to
position on it. A Toolbar is primarily a container, which itself means nothing and
doesn’t even do anything. The controls you position on it give it meaning. Still,
because of its position, it enjoys some visual characteristics but also imposes some
restrictions to its objects. Although it is a container, a Toolbar must be hosted by
another container. For this reason, the dimensions, namely the width, of a toolbar
are restricted to those of its host. When you add a toolbar to a form, it automatically
positions itself in the top section of the form and uses the same width as the form.
This means that the default Dock value of a Toolbar is displayed at the top.

Toolbar is created visually or programmatically. To create toolbars, the .NET
Framework provides a class named ToolStrip. The ToolStrip class is
derived from the Scrollable Control class and implements both
the IComponent and the IDisposable interfaces.

Therefore, to start a toolbar, declare a variable of this class. Because a
Toolbar is hosted by a container, namely a form, if you want to display it, you
should (must) add it to the controls collection of its host. Following is the code for
creating toolbar:

Imports System.Windows.Forms

Using the Toolbox

NOTES

Self-Instructional
Material 29

Public Class Exercise

 Inherits System.Windows.Forms.Form

 Dim tbrStandard As ToolStrip

 Public Sub New()

 tbrStandard = New ToolStrip

 Controls.Add(tbrStandard)

 End Sub

 <STAThread()>

 Public Shared Function Main() As Integer

 Application.Run(New Exercise)

 Return 0

 End Function

End Class

For creating a toolbar visually, select the Container section, the Toolbox
provides a ToolStrip button that you can click and click your form.

2.3 USE OF THE TOOLBOX

The toolbox window displays controls that you can add to Visual Studio projects.
To open toolbox, choose View Toolbox from the menu bar, or
press Ctrl+Alt+X.

Using the Toolbox

NOTES

Self-Instructional
30 Material

You can drag and drop different controls onto the surface of the designer
you are using, and to resize and position the controls.

Toolbox appears in conjunction with designer views, such as the designer
view of a XAML file or a Windows Forms App project. Toolbox displays only
those controls that can be used in the current designer. You can search
within Toolbox to further filter the items that appear.

2.4 PROJECT PROGRAMMING STRUCTURE IN
VISUAL BASIC APPLICATION

Without knowing the basic software languages like C and C++ it is easy to learn
VB.NET why because its drag and drop feature , but while making an application
in console it is mandatory to know about the flow of the code so following are the
steps to be placed in the code.

A VB.NET program consists of the following:

 Namespace Declaration

 One or More Procedures

 A Class or Module

 Variables

 The Main Procedure

 Comments

 Statements and Expressions

Using the Toolbox

NOTES

Self-Instructional
Material 31

Hello World Program

Step 1 Create a new console application.

Step 2 Add the following code:
Imports System

Module Module1

 ‘Prints Hello Guru99

 Sub Main()

 Console.WriteLine(“Hello Guru99”)

 Console.ReadKey()

 End Sub

End Module

Step 3 Click the Start button from the toolbar to run it. It should print the following
on the console: Beginner Tutorial

Following are the various parts of the above program:

Using the Toolbox

NOTES

Self-Instructional
32 Material

Explanation of Code

1. This is called the namespace declaration. What we are doing is that we are
including a namespace with the name System into our programming structure.
After that, we will be able to access all the methods that have been defined
in that namespace without getting an error.

2. This is called a module declaration. Here, we have declared a module named
Module1. Visual Basic (VB) is an object-oriented language. Hence we
must have a class module in every program. It is inside this module that you
will be able to define the data and methods to be used by your program.

3. This is a comment. To mark it as a comment, we added a single quote (‘) to
the beginning of the sentence. The VB compiler will not process this part.
The purpose of comments is to improve the readability of the code. Use
them to explain the meaning of various statements in your code. Anyone
reading through your code will find it easy to understand.

4. A VB module or class can have more than one procedures. It is inside
procedures where you should define your executable code. This means
that the procedure will define the class behaviour. A procedure can be a
Function, Sub, Get, Set, AddHandler, Operator, RemoveHandler, or
RaiseEvent. In this line, we defined the Main sub-procedure. This marks
the entry point in all VB programs. It defines what the module will do when
it is executed.

5. This is where we have specified the behaviour of the primary method. The
WriteLine method belongs to the Console class, and it is defined inside
the System namespace. Remember this was imported into the code. This
statement makes the program print the text Hello Guru99 on the console
when executed.

6. This line will prevent the screen from closing or exiting soon after the program
has been executed. The screen will pause and wait for the user to perform
an action to close it.

7. Closing the main sub-procedure.

8. Ending the module.

Classes

In VB, we use classes to define a blueprint for a data type. It does not mean that
a class definition is a data definition, but it describes what an object of that class
will be made of and the operations that we can perform on such an object.

An object is an instance of a class. The class members are the methods and
variables defined within the class.

To define a class, we use theClass keyword, which should be followed
by the name of the class, the class body, and theEndClass statement. This is
described in the following syntax:

Using the Toolbox

NOTES

Self-Instructional
Material 33

[<attributelist>] [accessmodifier] _

Class name

 [Inherits classname]

 [statements]

End Class

Here,

 TheattributeList denotes a list of attributes that are to be applied
to the class.

 TheaccessModifier is the access level of the defined class. It is
an optional parameter and can take values like Public, Protected,
Protected Friend, Friend, and Private.

 The Inherits denotes any parent class that it inherits.

Following is example code to create a class in VB -

Step 1 Create a new console application.

Step 2 Add the following code:
Imports System

Module Module1

 Class Figure

 Public length As Double

 Public breadth As Double

 End Class

 Sub Main()

 Dim Rectangle As Figure = New Figure()

 Dim area As Double = 0.0

 Rectangle.length = 8.0

 Rectangle.breadth = 7.0

 area = Rectangle.length * Rectangle.breadth

 Console.WriteLine(“Area of Rectangle is : {0}”,
area)

 Console.ReadKey()

 End Sub

End Module

Step 3 Run the code by clicking the Start button from the Toolbar. You will get the
following window:

Using the Toolbox

NOTES

Self-Instructional
34 Material

We have used the following code:

Explanation of Code

1. Creating a module named Module1.

2. Creating a class named Figure.

3. Creating a class member named length of type Double. Its access level has
been set to public meaning that it will be accessed publicly.

4. Creating a class member named breadth of type Double. Its access level
has been set to public meaning that it will be accessed publicly.

5. Ending the class.

6. Creating the main sub procedure.

7. Creating an object named Rectangle. This object will be of type figure,
meaning that it will be capable of accessing all the members defined inside
the Figure class.

8. Defining a variable named area of type Double and initializing its value to
0.0.

9. Accessing the length property defined in the Figure class and initializing its
value to 8.0.

Using the Toolbox

NOTES

Self-Instructional
Material 35

10. Accessing the breadth property defined in the Figure class and initialize its
value to 7.0.

11. Calculating the area of the rectangle by multiplying the values of length and
breadth. The result of this calculation will be assigned to the area variable.

12. Printing some text and the area of the rectangle on the console.

13. Pausing the console waiting for a user to take action to close it.

14. Ending the sub-procedure.

15. Ending the class.

Structure

A structure is a user-defined data type. The Structure provide us with a way of
packaging data of different types together. A structure is declared using the
Structure keyword. Example to create a structure in VB:

Step 1 Create a new console application.

Step 2 Add the following code:
Module Module1

 Structure Struct

 Public x As Integer

 Public y As Integer

 End Structure

 Sub Main()

 Dim st As New Struct

 st.x = 10

 st.y = 20

 Dim sum As Integer = st.x + st.y

 Console.WriteLine(“The result is {0}”, sum)

 Console.ReadKey()

 End Sub

End Module

Step 3 Run the code by clicking the Start button from the Toolbar. You should get
the following window:

Using the Toolbox

NOTES

Self-Instructional
36 Material

We have used the following code:

Explanation of Code

1. Creating a module named Module1.

2. Creating a structure named Struct.

3. Creating a variable x of type integer. Its access level has been set to Public
to make it publicly accessible.

4. Creating a variable y of type integer. Its access level has been set to Public
to make it publicly accessible.

5. End of the structure.

6. Creating the main sub procedure.

7. Creating an object named st of type Struct. This means that it will be
capable of accessing all the properties defined within the structure named
Struct.

8. Accessing the variable x defined within the structureStruct and initializing
its value to 10.

9. Accessing the variable y defined within the structureStruct and initializing
its value to 20.

10. Defining the variable sum and initializing its value to the sum of the values of
the above two variables.

11. Printing some text and the result of the above operation on the console.

12. Pausing the console window waiting for a user to take action to close it.

13. End of the main sub procedure.

14. End of the module.

Using the Toolbox

NOTES

Self-Instructional
Material 37

Using Microsoft Visual Studio IDE

IDE stands for Integrated Development Environment. That is where the code is
written. The most popular form of IDE for VB programming is Microsoft Visual
Studio.

To write your code, you need to create a new project. The following steps
can help you achieve this.

Step 1 Open Visual Studio, and click the File menu, Choose New then Project
from the Toolbar.

Step 2 On the new window, click Visual Basic from the left vertical navigation
pane. Choose Window Forms Application.

Using the Toolbox

NOTES

Self-Instructional
38 Material

Step 3 Give it a name and click the OK button. The project will be created.

You will have a Windows type application project developed. By dragging
and dropping elements, this form of project will allow you to create a Graphical
User Interface.

An application that runs on the console would need to be built. This needs
that you create a project for Console Program. The following steps will help you
in achieving this.

Step 1 Open Visual Studio, and click the File menu, Choose New then Project
from the Toolbar.

Step 2 On the new window, click Visual Basic from the left vertical navigation
pane. Choose Console Application.

Step 3 Give it a name and click the OK button. The project will be created.

Using the Toolbox

NOTES

Self-Instructional
Material 39

Check Your Progress

1. Explain the term Toolbar.

2. Why we use Toolbar in Visual Basic?

3. List the two types for creating Toolbar in Visual Basic application.

4. State about the Toolbox.

5. Give the definition of object.

6. Which keyword is used to define a class in Visual Basic?

7. Write down the syntax of class.

8. What is attributeList and AccessModifier?

9. Why we use keyword Inherits?

10. Elaborate on the structure of a program.

2.5 EVENT AND EVENT DRIVEN PROCEDURES

In a Visual Basic (VB) project, the occurring processes have to be associated
with events. An event is something that occurs when a button is clicked by the user
or a form is opened. The operation is driven by event because every execution is
a result of some event. The programmer’s role is to anticipate the events and to
write the code for execution during the occurrence of the event.

A VB application is interactive because of the constant interaction of the
user with the program. Visual Basic (VB) programs are built around events, which
are different incidents that can occur in a program. This will become clearer when
VB is compared to procedural programming. In procedural languages, an
application is written and executed by a logical checking of the program through
the program statements, one after another. The control can be transferred to some
other point in a program on a temporary basis. In applications that are event
driven, the execution of the program statements occurs only when a certain event
calls a particular part of the code assigned to it.

We can look at a TextBox control and a few of its related events to
understand the concept of event driven programming. The TextBox control supports
several events, such as Change, Click, Mouse Move and others that will be listed
in the drop-down list of Properties in the code window for the TextBox control.
Let us look at a few of them:

 The code entered in the Change event fires in case of a change in the contents
of the TextBox.

 The Click event fires when theTextBox control is clicked.

 The Mouse Move event fires when the mouse is moved over the Textbox.

Using the Toolbox

NOTES

Self-Instructional
40 Material

While working on Visual Basic (VB), many times we need to create an application
or a project that consists of thousands of lines. Now, it is very difficult and time
consuming to control, to find out logical and syntax error, and perform error
handling. Therefore, a project is divided into subparts and each subpart contains
a portion of the complete code, and is a complete application in itself. These
subparts are known as modules of the project. These modules can further be
divided into subparts and these subparts are known as procedures.

Below figure shows the hierarchy of a project containing modules and
procedures.

Event Procedures

Event procedure is a procedure that executes on a specific event, such as click
button event or action by a Visual Basic (VB) object.

Now create an event procedure to display a message box with the following
message

“You are in the Event procedure process”.

Creating Form

1. Open a new project in the Visual Basic (VB).

2. Double-click the CommandButton in the Toolbox to create a
CommandButton on the Form1 window.

Adding Code to the Form

1. Double-click the CommandButton to open the Code window.

2. Enter the following lines of code in the Code window:
Private Sub Command1_Click ()

Eventproc ‘calling the procedure named Eventproc

End Sub

3. Now, to create an event procedure, select ToolsAdd Procedure on the

Menu bar to display the Add Procedure Dialog Box.

Below figure shows the Add Procedure Dialog Box.

Using the Toolbox

NOTES

Self-Instructional
Material 41

4. Enter a name in the Name TextBox for the event procedure, for example
eventproc.

5. Click OK to display the following lines of code in the Code window:

Public Sub eventproc()

End Sub

6. Enter the following lines of code in the Code window:

Public Sub eventproc()

Msgbox(“You are in the event procedure process”)

End Sub

Below figure shows the Code window for the event procedure.

Executing the Form

1. Press F5 to compile and execute the form. After execution, the output of
the form is displayed on the computer screen.

Below figure shows the compiled form.

Using the Toolbox

NOTES

Self-Instructional
42 Material

2. Now, click the CommandButton to display the output.

Below figure shows output message box for the event procedure.

In this program,Command1 is working as a module, which calls the sub
proceduresubproc. The sub procedure is displaying a message on the
message box.

Check Your Progress

11. What is event in Visual Basic?

12. Explain about the event procedure.

13. Which key is used to execute the program in Visual Basic?

2.6 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A Toolbar is a bar that displays in the top section under the main menu.

2. A Toolbar is a classic control container. It can host text, buttons, etc.

3. Toolbar is created visually or programmatically.

4. The Toolbox window displays controls that you can add to Visual Studio
projects.

5. An object is an instance of a class.

6. Class keyword is used to define a class in Visual Basic.

7. Following are the syntax for class :

[<attributelist>] [accessmodifier] _

Class name

 [Inherits classname]

 [statements]

End Class

8. TheattributeList denotes a list of attributes that are to be applied
to the class.The accessModifier is the access level of the defined
class. It is an optional parameter and can take values like Public, Protected,
Protected Friend, Friend, and Private.

9. The Inherits denotes any parent class that it inherits.

10. A structure is a user-defined data type. Structures provide us with a way of
packaging data of different types together. A structure is declared using the
Structure keyword.

Using the Toolbox

NOTES

Self-Instructional
Material 43

11. An event is something that occurs when a button is clicked by the user or a
form is opened. The operation is driven by event because every execution
is a result of some event.

12. Event procedure is a procedure that executes on a specific event, such as
click button event or action by a VB object.

13. F5 is used to execute the program in Visual Basic.

2.7 SUMMARY

 A Toolbar is a bar that displays in the top section under the main menu.

 A Toolbar is a classic control container. It can host text, buttons, etc. It is up
to you to decide whether your application needs a Toolbar and what you
want to position on it.

 A Toolbar is primarily a container, which itself means nothing and doesn’t
even do anything. The controls you position on it give it meaning. Still,
because of its position, it enjoys some visual characteristics but also imposes
some restrictions to its objects. Although it is a container, a Toolbar must be
hosted by another container.

 When you add aToolbar to a form, it automatically positions itself in the top
section of the form and uses the same width as the form. This means that the
default Dock value of a Toolbar is Top.

 Toolbar is created visually or programmatically.

 To create toolbars, the .NET Framework provides a class named ToolStrip.
The ToolStrip class is derived from the ScrollableControl class and
implements both the IComponent and the IDisposable interfaces.

 Therefore, to start a Toolbar, declare a variable of this class. Because a
Toolbar is hosted by a container, namely a form.

 For creating a Toolbar visually, select the Container section, the Toolbox
provides a ToolStrip button that you can click and click your form.

 Without knowing the basic software languages like c and c++ it is easy to
learn VB.NET why because its drag and drop feature.

 The Toolbox window displays controls that you can add to Visual Studio
projects.

 In VB, we use classes to define a blueprint for a data type. It does not mean
that a class definition is a data definition, but it describes what an object of
that class will be made of and the operations that we can perform on such
an object.

 An object is an instance of a class. The class members are the methods and
variables defined within the class.

 To define a class, we use theClass keyword, which should be followed
by the name of the class, the class body, and theEndClass statement.

Using the Toolbox

NOTES

Self-Instructional
44 Material

 TheattributeList denotes a list of attributes that are to be applied
to the class.

 TheaccessModifier is the access level of the defined class. It is an
optional parameter and can take values like Public, Protected, Protected
Friend, Friend, and Private.

 The Inherits denotes any parent class that it inherits.

 A structure is a user-defined data type.

 The Structure provide a way of packaging data of different types together.

 A structure is declared using the Structure keyword.

 IDE stands for Integrated Development Environment. That is where the
code is written. The most popular form of IDE for VB programming is
Microsoft Visual Studio.

 In a Visual Basic (VB) project, the occurring processes have to be
associated with events.

 An event is something that occurs when a button is clicked by the user or a
form is opened.

 The operation is driven by event because every execution is a result of
some event. The programmer’s role is to anticipate the events and to write
the code for execution during the occurrence of the event.

 A VB application is interactive because of the constant interaction of the
user with the program. Visual Basic (VB) programs are built around events,
which are different incidents that can occur in a program.

 In procedural languages, an application is written and executed by a logical
checking of the program through the program statements, one after another.

 The control can be transferred to some other point in a program on a
temporary basis.

 In applications that are event driven, the execution of the program statements
occurs only when a certain event calls a particular part of the code assigned
to it.

 The code entered in the Change event fires in case of a change in the contents
of the TextBox.

 The Click event fires when theTextBox control is clicked.

 The Mouse Move event fires when the mouse is moved over the Textbox.

 While working on Visual Basic (VB), many times we need to create an
application or a project that consists of thousands of lines. Now, it is very
difficult and time consuming to control, to find out logical and syntax error,
and perform error handling.

 A project is divided into subparts and each subpart contains a portion of
the complete code, and is a complete application in itself.

 These subparts are known as modules of the project.

Using the Toolbox

NOTES

Self-Instructional
Material 45

 These modules can further be divided into subparts and these subparts are
known as procedures.

 Event procedure is a procedure that executes on a specific event, such as
click button event or action by a Visual Basic (VB) object.

2.8 KEY WORDS

 Toolbar: A Toolbar is a bar that displays in the top section under the main
menu. Toolbar is a classic control container. It can host text, buttons, etc.

 Toolbox: Toolbox window displays controls that you can add to Visual
Studio projects.To customize the Toolbox by adding pages to it or by adding
controls by using the Additional Controls command from the Tools menu.

 Object: An object is an instance of a class. The class members are the
methods and variables defined within the class.

 AttributeList: The attributeList denotes a list of attributes that are to be
applied to the class.

 AccessModifier: The accessModifier is the access level of the defined
class. It is an optional parameter and can take values like Public, Protected,
Protected Friend, Friend, and Private.

 Inherits: The Inherits denotes any parent class that it inherits.

 Event: An event is something that occurs when a button is clicked by the
user or a form is opened.

 Event procedure: Event procedure is a procedure that executes on a
specific event, such as click button event or action by a Visual Basic (VB)
object.

2.9 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Explain about the Toolbar.

2. What is Toolbox?

3. List the components of program structure in Visual Basic.

4. Why we use comment in a program?

5. Define about theWriteLine method.

6. Explain Visual Basic Integrated Development Environment (IDE).

7. Which keyword is used for creating structure in Visual Basic?

8. What is event driven programming?

9. Explain mouse press event and double-click event.

Using the Toolbox

NOTES

Self-Instructional
46 Material

Long-Answer Questions

1. Briefly discuss about the Toolbar. Write a code for creating Toolbar in
Visual Basic.

2. Write a Visual Basic program to print Hello World on a console with code
explanation.

3. Create a Visual Basic program to find out the area of rectangle with code
explanation.

4. Describe in detail about the programming structure with help of appropriate
example.

5. Elaborate briefly on the create application using Integrated Development
Environment (IDE) in Visual Basic with the help of code examples.

6. Write down the steps to create event procedure in Visual Basic.

2.10 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Program Design

NOTES

Self-Instructional
Material 47

UNIT 3 PROGRAM DESIGN
3.0 Introduction
3.1 Objectives
3.2 Forms and Controls

3.2.1 Creating and Saving a New Program
3.2.2 Restoring/Opening an Existing Program
3.2.3 Running the Program
3.2.4 Stopping the Program
3.2.6 Printing Visual Basic Project
3.2.7 Exiting Visual Basic

3.3 Making Exe Files
3.4 Answers to Check Your Progress Questions
3.5 Summary
3.6 Key Words
3.7 Self-Assessment Questions and Exercises
3.8 Further Readings

3.0 INTRODUCTION

Visual Basic (VB) is an event driven programming language. The ‘Visual’ part
refers to the method used to create the Graphical User Interface (GUI). Rather
than writing numerous lines for a code to describe the appearance and location of
interface elements.

The ‘Basic’ part refers to the BASIC language that is used by most of the
programmers in the history of computing. Visual Basic has evolved from the BASIC
language and now contains several hundred statements, functions and keywords,
many of which are directly related to the Windows GUI. Visual Basic allows
professionals to implement anything that can be implemented using any other
Windows programming language.

The Visual Basic environment is a platform provided by Visual Basic to
develop and execute a project. The environment consists of different project
templates, control tools and various other options. A project is a collection of files
that you use to build an application.

A project file is simply a list of all the files and objects associated with a
project, as well as information on the environment options that you set. This
information is updated every time you save the project. All these files and objects
can be shared by other projects as well. To you have completed all the files for a
project, convert the project into an executable file. You can also create other type
of executable files, such as .ocx, .dll, etc.

In this unit, you will study about the Forms and controls, writing the code,
saving the project, running and testing the project, making EXE file and printouts.

Program Design

NOTES

Self-Instructional
48 Material

3.1 OBJECTIVES

After going through this unit, you will be able to:

 Know about how to opening a Visual Basic Project

 Discuss about the opening an existing program

 Understand the introduction of saving a Visual Basic Project

 Explain about the running a Visual Basic Project

 Able to making the EXE file of a Visual Basic Project

 Elaborate on the printing of the project

3.2 FORMS AND CONTROLS

To open a Visual Basic project, invoke Visual Basic 6.0 (VB6) by either double-
clicking on the shortcut path or by going through the pull-up menu from Start. To
invoke VB by going through the pull-up menu, select Start ->Programs->Microsoft
Visual Studio 6.0->Microsoft Visual Basic 6.0. After a while, it will show the
New Project dialog box which contains three tabs. The current tab is ‘New’. The
other two tabs are ‘Existing’ and ‘Recent’. Now double-click the project that you
want to open and this will open the project in the Code window. The Existing and
recent tab pages show the existing project and recently created project respectively.

And the New tab page contains various icons. The commonly used icons are:

Standard: This project type must be chosen if you wish to develop a small or
large standalone application.

ActiveX EXE: Choose this option if you wish to create an executable component.
An ActiveX executable component can be executed from other applications also.
This is a program that provides functionality to a number of other applications.

ActiveX Control: This helps create a custom ActiveX control that can be used in
other applications. These are like the third party controls that you buy from other
software vendors.

ActiveX DLL: Like the ActiveX EXE, it provides added functionality to your
application, but will work ‘In-process’ with your application.
Data Project: Choose this option to create a project with the database components.

IIS: This helps create an Internet application.

ActiveX Document: Creates a component that can take over the application at
runtime. It creates an Internet application that can be executed from a browser.

Program Design

NOTES

Self-Instructional
Material 49

DHTML Application: Creates an application that can be executed from a web

browser only.

After creating a project, you need to save it. For this, click the File menu in
the VB environment and select the Save project option. You will then be asked to
provide a name for the Form File. This is the name of the file. This should not be
confused with the form caption. Give a name for the form. Make sure that you
know in which directory you are going to save it. Then you will be asked to give a
name for the project. Give an appropriate name.

Note: Each time you save a project, Visual Basic updates the project file (.vbp).
A project file contains the same list of files that appears in the Project Explorer
window as well as references to the ActiveX controls and objects that are used in
the project.

Various options available to save a VB project are:

 Save Project Updates the project file of the current project and all of its
form, standard and class modules.

 Save Project as Updates the project file of the current project by saving
the project file under a file name that you specify. Visual Basic also
prompts you to save any forms or modules that have changed.

The following point will discuss the life cycle of a Visual Basic project.

3.2.1 Creating and Saving a New Program

To create and some a new proram follow the given steps:

(i) Start VB from the Windows start menu.

The large VB window appears with a New Project dialog box
(as shown in Figure 3.1). (In case there is no dialog box, bring it up through
File New Project).

Select Standard EXE. The VB window will show Project1 with an
emptyForm1 (as shown in Figure 3.2).

(ii) Name the project.

Select Project Project1 Properties. In the Project Properties dialog
box, change Project1 to your project name, say Sample.

The TitleBar on the VB window changes to match.

(iii) Name the form and set the form caption.

The Properties window at the right side of the VB window shows the
properties for the form. The first property at the top of the list is Name.
Change the name to, say frmsample1.

Program Design

NOTES

Self-Instructional
50 Material

The title bar in the Form window changes to match as shown in Figure 3.1.

Fig. 3.1 Showing Change in the Title Bar

Scroll down to Caption still remaining in the Properties window. Rename
the caption with the same name as the project, say Sample.

The title bar on the form will change automatically to match.

(iv) Save the form (you should always name and save the form before you save
the project).

Select File Save frmSample1 As The Save File As and the Save
Project As dialog boxes appear (as shown in Figures 3.2 and 3.3
respectively). The Save in: TextBox shows the folder’s name where the
form will be saved. The form file namefrmSample1.frm should appear
in the File name: box (if not, type in the correct name). Click on Save.

Fig. 3.2 Save File as Dialog Box (to save form file as frmSample1.frm)

The form is saved.

(v) Save the project (be sure to name and save the form before you save the
project).

Select File Save Project As The Save Project As dialog box

Program Design

NOTES

Self-Instructional
Material 51

appears. The Save in: Textbox should show the correct folder (the one you
just created for the form). The File name: box should show the correct
name (Sample.vbp in this example). Click on Save.

Fig. 3.3 Save Project as Dialog Box (to save project file as Sample.vbp)

The project is saved. After naming and saving the form and the project, it is
better to exit and then restart Visual Basic (VB) for making sure that the
project can be restored.

3.2.2 Restoring/Opening an Existing Program

To restore and open the existing program, follow the given steps:

(i) Start VB.

Find Visual Basic on the Windows Start menu and start it.

The large VB window appears with a New Project dialog box. Choose the
Existing tab (as shown in Figure 3.4). (If there is no dialog box, bring it up
by File Open Project).

Fig. 3.4 New Project Dialog Box (to choose the Existing Project)

Program Design

NOTES

Self-Instructional
52 Material

Navigate to the folder that was created earlier. There will be a .vbp file for
the project created earlier (Sample.vbp in this example). Select that file.

Alternatively, for navigating to the project folder, you can use My Computer
or Windows Explorer instead of the Start menu. The VB starts and opens
that project when the .vbp file or the .frm file is double clicked.

The restored project appears in the VB window. The project name appears
in the title bar.

(ii) Open the form.

An icon for a folder of forms appears in the Project window on the right
side of the VB window. Open this folder and select the form you saved.
Click on the View Code and View Object icons for displaying the code or
form layout windows.

Now you are ready to add controls and code to the form. At any time, you
can use File Save frmSample1 and File Save Project to save
your changes to the form and the project without going through the Save As
... dialogs.

3.2.3 Running the Program

There are various ways of running your program:

 Press the F5 Key.

 On the VB Menu Bar Click Run Start

 On the VB Toolbar, Click the VB Run Icon (the Arrow)

The program window appears and looks similar to the form that was designed.
The window controls are active. The program behaves like any other window on
the desktop while it is running — you can minimize it, move it, etc.

Fig. 3.5 Output of Sample Program

From the design mode the indicator on the VB window title bar changes to
the run mode. Several items in the VB window disappear during the run mode and
several menu and toolbar operations are not enabled.

Program Design

NOTES

Self-Instructional
Material 53

3.2.4 Stopping the Program

There are various ways of stopping your program:

 In the window of your program, click the Exit button or menu (if you are
provided one).

 In the title bar of your program window, click the Close button (VB always
provides one).

 On the VB menu bar, Click Run Stop.

 On the VB toolbar, click the VB Stop icon (the box).

From therun mode, the indicator on the VB window title bar changes to
the design mode. Items in the VB window reappear, and menu and toolbar
operations are enabled again.

3.2.5 Examining the Program in Break Mode

As the program runs, there are several ways of putting VB in the break mode:

 On the VB menu bar, click Run Break

 On the VB toolbar, click the Break icon (the vertical bars)

 Your program reaches a breakpoint or experiences an error

3.2.6 Printing Visual Basic Project

There is no printer control for printing a Visual Basic project. Unlike most of the
functions in VB, sending output to the printer can be a tire some process. It requires
sending a long list of instructions to the printer, describing exactly the way the
output should look like.

Despite the problems sometimes faced with printing, you can easily learn to
control all the aspects of printing that include the font of individual characters that
is sent by the application to the printer. The control needed for printing provides
accuracy and it lets you control all the printing details.

3.2.7 Exiting Visual Basic

Following are the ways to exit VB:

 On the menu bar, click File Exit

 On the VB window title bar, click the Close button

VB will give you a warning if you have forgotten to save your work.

3.3 MAKING EXE FILES

Once you prepare a Project ‘Project1’ in Visual Basic you can make an executable
‘EXE’ file to it. For this you need to select FileMake Project1.exe which is
saved in ‘1_First Program’ folder as shown in the following screen:

Program Design

NOTES

Self-Instructional
54 Material

Then, you need to save the executable in the same folder by the same name as
‘Project1.exe’. The EXE version in Visual Basic is the version that should be
tested for documentation. The Visual Basic development environment sometimes
called the desktop prevents or protects from some errors and your user will be
running the EXE version. Following steps are required to save all the files:

 The form name should reflect what it does in the project as frmFirst prefix
the form name with frm (short for form).

 The project name should reflect the task of the project named as
prjFirstProgram.

 The name for the executable should be meaningful to the user.

Run a Visual Basic program using the executable (EXE).

You can find frmFirst.frm (Visual Basic Form File), FirstProgram.exe (application),
prjFirst.vbp (Visual Basic Project) and prjFirst.vbw (Visual Basic Project) as
shown in the above screen containing file size (in KB). To run the executable
version double click on FirstProgram.exe then check that the Visual Basic

Program Design

NOTES

Self-Instructional
Material 55

development environment sometimes called the desktop is closed and yet the
program works. Following screen shows that ‘Form1’ form is prepared and ready
for testing method:

Following characteristics appear in the ‘Form1’ form:

 The Window can be minimized.

 The Window can be maximized.

 The Window can be moved about the screen.

 The Window can be resized by pulling the borders.

 The Window can be closed.

Check Your Progress

1. Write down the various options to save a VB project.

2. State the various methods to execute a VB program.

3. Which short cut key is used for executing the Visual Basic project?

4. List down the ways to run VB program in break mode.

5. Explain about the printing of Visual Basic project.

6. What are the procedures for exiting from the Visual Basic (VB)?

7. Define the steps to save EXE file of VB project.

Program Design

NOTES

Self-Instructional
56 Material

3.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Various options to save a VB project are:

 Select the Start option from the Run menu on the Visual Basic design
window.

 Press the F5 key on the keyboard.

 Click the Start button on the Visual Basic standard toolbar.

2. Various methods to execute a Visual Basic Program are:

A. Selecting the Start option from the Run menu.

B. Pressing the F5 key on the keyboard.

C. Selecting the Start icon from the Standard toolbar on the Visual Basic
designer window.

3. F5 is used for executing the Visual Basic project.

4. As the program runs, there are several ways of putting VB in the break
mode:

 On the VB menu bar, click Run ® Break

 On the VB toolbar, click the Break icon (the vertical bars)

 Your program reaches a breakpoint or experiences an error

5. There is no printer control for printing a Visual Basic project. Unlike most
of the functions in VB, sending output to the printer can be a tire some
process. It requires sending a long list of instructions to the printer, describing
exactly the way the output should look like.

6. Following are the ways to exit VB:

 On the menu bar, click File ® Exit

 On the VB window title bar, click the Close button

7. Following steps are required to save all the files of VB project:

 The form name should reflect what it does in the project as frmFirst
prefix the form name with frm (short for form).

 The project name should reflect the task of the project named as
prjFirstProgram.

 The name for the executable should be meaningful to the user.

3.5 SUMMARY

 Standard project type must be chosen if you wish to develop a small or
large standalone application.

Program Design

NOTES

Self-Instructional
Material 57

 Choose ActiveX EXE option if you wish to create an executable component.
An ActiveX executable component can be executed from other applications
also. This is a program that provides functionality to a number of other
applications.

 ActiveX Control helps create a custom ActiveX control that can be used in
other applications. These are like the third party controls that you buy from
other software vendors.

 Like the ActiveX EXE, ActiveX DLL provides added functionality to your
application, but will work ‘in-process’ with your application.

 Choose data project option to create a project with the database
components.

 IIS helps create an Internet application.

 ActiveX Document Creates a component that can take over the application
at runtime. It creates an Internet application that can be executed from a
browser.

 DHTML Application Creates an application that can be executed from a
web browser only.

 The Properties window at the right side of the VB window shows the
properties for the form. The first property at the top of the list is Name.
Change the name to, say frmsample1.

 Scroll down to Caption still remaining in the Properties window. Rename
the caption with the same name as the project, say Sample. The title bar on
the form will change automatically to match.

 Save the form (you should always name and save the form before you save
the project).

 The project is saved. After naming and saving the form and the project, it is
better to exit and then restart VB for making sure that the project can be
restored.

 Alternatively, for navigating to the project folder, you can use My Computer
or Windows Explorer instead of the Start menu. The VB starts and opens
that project when the .vbp file or the .frm file is double clicked. The restored
project appears in the VB window. The project name appears in the title
bar.

 The program window appears and looks similar to the form that was
designed. The window controls are active. The program behaves like any
other window on the desktop while it is running-you can minimize it, move
it, etc.

 From the design mode the indicator on the VB window title bar changes to
the run mode.

Program Design

NOTES

Self-Instructional
58 Material

 Several items in the VB window disappear during the run mode and several
menu and toolbar operations are not enabled.

 In the window of your program, click the Exit button or menu (if you are
provided one).

 In the title bar of your program window, click the Close button (VB always
provides one). On the VB menu bar, Click Run? Stop. On the VB toolbar,
click the Stop icon (the box).

 From the run mode, the indicator on the VB window title bar changes to
the design mode. Items in the VB window reappear, and menu and toolbar
operations are enabled again.

 As the program runs, there are several ways of putting VB in the break
mode: On the VB menu bar, click Run Break. On the VB toolbar, click the
Break icon (the vertical bars).Your program reaches a breakpoint or
experiences an error.

 There is no printer control for printing a Visual Basic project. Unlike most
of the functions in VB, sending output to the printer can be a tiresome
process.

 It requires sending a long list of instructions to the printer, describing exactly
the way the output should look like.

 Despite the problems sometimes faced with printing, you can easily learn to
control all the aspects of printing that include the font of individual characters
that is sent by the application to the printer.

 The control needed for printing provides accuracy and it lets you control all
the printing details.

 The ways to exit VB: On the menu bar, click File Exit. On the VB window
title bar, click the Close button. VB will give you a warning if you have
forgotten to save your work.

 The form name should reflect what it does in the project as frmFirst prefix
the form name with frm (short for form).

 The project name should reflect the task of the project named as
prjFirstProgram.

 The name for the executable should be meaningful to the user.

3.6 KEY WORDS

 Project: project is a collection of file which are used file, that one can use
to build and application.

 Program:A computer program is a collection of data and instructions that
can be executed by a computer to perform a specific task.

Program Design

NOTES

Self-Instructional
Material 59

 Visual Basic:Visual Basic is a third-generation event-driven programming
language from Microsoft known for its Component Object Model (COM)
programming model first released in 1991 and declared legacy during 2008.

 Break mode: Break mode is the state of an application when the execution
gets paused and allows the developer to edit the value in the current state

 File:A file is a collection of data stored in one unit, identified by a filename.
It can be a document, picture, audio or video stream, data library, application,
or other collection of data.

 Standard: This project type must be chosen if you wish to develop a small
or large standalone application.

 ActiveX EXE: Choose this option if you wish to create an executable
component. An ActiveX executable component can be executed from other
applications also. This is a program that provides functionality to a number
of other applications.

 ActiveX Control: This helps create a custom ActiveX control that can be
used in other applications. These are like the third party controls that you
buy from other software vendors.

 ActiveX DLL: Like the ActiveX EXE, it provides added functionality to
your application, but will work ‘in-process’ with your application.

 IIS: This helps to create an Internet application.

 DHTML application: Creates an application that can be executed from a
web browser only.

3.7 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Write the various procedures for running a program.

2. State the different ways for running the Visual Basic program.

3. What are the various ways of stopping VB program?

4. Explain about the printing Visual Basic project.

5. Elucidate on the different ways to save EXE file.

Long-Answer Questions

1. Briefly discuss the how to create and save the new program for Visual
Basic?

2. Discuss about the restoring/opening and existing program for Visual Basic.

3. Describe the various procedures of running a program giving appropriate
examples?

Program Design

NOTES

Self-Instructional
60 Material

4. Write the short notes on :

a) Stopping the Program

b) Examining the Program in Break Mode

c) Printing Visual Basic Project

d) Exiting Visual Basic

3.8 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Adding Code
and Using Events

NOTES

Self-Instructional
Material 61

BLOCK II
VISUAL BASIC CODE, EVENTS AND CONTROLS

UNIT 4 ADDING CODE AND
USING EVENTS

4.0 Introduction
4.1 Objectives
4.2 Data Types
4.3 Declaring and Using Variables
4.4 Introducing Operators

4.4.1 Arithmetic Operators
4.4.2 Relational Operators
4.4.3 Concatenation Operators
4.4.4 Logical Operators

4.5 Answers to Check Your Progress Questions
4.6 Summary
4.7 Key Words
4.8 Self-Assessment Questions and Exercises
4.9 Further Readings

4.0 INTRODUCTION

Data types, operators and functions are the tools to learn the basics of coding of
any language. In Visual Basic (VB) code basics, the various data types are: Boolean,
byte, double, integer, long, single and string. Constants or literals are values given
to a variable. In fact, a constant is a value that does not change. A constant whose
data type is not specified is considered to be of variant type. A variable is a named
storage location whose contents can be varied, or it is simply a name you give for
a memory area in which the value of data, which was utilized by your program, is
contained. As the name suggests, it is a location whose contents can be varied.
Like other programming languages, Visual Basic (VB) also supports variables. A
variable has two things associated with it: a name and its data type.

The variable name is used to refer to the value stored in it and the data type
tells what type of value can be stored in the variable.

Operators are special symbols or characters used to describe an operation
or an action that is to take place between two or more values. Operators are
available in Visual Basic (VB) for performing arithmetic, comparison and logical
operations.

Programming languages generally support a set of operators that are similar
to operators in mathematics. A language may contain a fixed number of built-in
operators or it may allow the creation of programmer-defined operators. Operators

Adding Code
and Using Events

NOTES

Self-Instructional
62 Material

perform operations on one or more operands. They are used to manipulate primitive
data types.

An expression in a programming language refers to a combination of explicit
values, constants, variables, operators and functions that are interpreted according
to the r rules of precedence and association followed by the language. When an
expression is computed, it produces a value.

In this unit, you will study about the literals data types, declaration of
variables, operator subroutine and functions.

4.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss about the constants, their types and scope

 Introducing and declaring variables to store values during computations

 Explain the data types, such as integer and strings

 Declaring data types as per programming syntax in an application

 Describe variables and data types

 Understand the method of declaring a data type

 Use various operators in Visual Basic

4.2 DATA TYPES

Every programming element, such as variable, literal, constant, procedure etc.,
has a data type. Visual Basic (VB) have a name and declared data type. The data
type of a programming element determines how the bits/bytes representing these
values are stored in the computer memory. When you declare a variable, you also
declare a data type for it. All variables have a data type that determines the kind of
data that they can store.

For example, in an invoice program, the variable,ItemName will probably
hold values like bread, margarine, coke, toothpaste, etc., that are all purely textual
in nature. Besides, you will not perform any arithmetic operations on these values.
On the other hand, theItemRate variable holds numeric values which will be
used for arithmetic and other operations.

Therefore, you have at least two types of variables. Visual Basic has a
number of variable types to deal with various programming requirements. One
needs to use different types of variables for different requirements in order to
optimize speed and memory requirements.

Data types can be applied to other elements also besides variables. When
you assign a value to a property, that value has a data type. In fact, just about
anything in Visual Basic that involves data also includes data types. Table 4.1 lists
various data types and their description.

Adding Code
and Using Events

NOTES

Self-Instructional
Material 63

Table 4.1 Data Types and their Storage Capacity

Data Type Range

Integer A numeric variable holds numeric values from -32,768 to 32,767.

Long Integer A numeric variable holds a wider range of integers thanInteger
-2,147,483,648 to 2,147,483,647.

Single A numeric variable, which holds numbers with decimal places.
-3.402823E38 to -1.401298E-45–For negative values,
1.401298E-45 to 3.402823E38–For positive values.

Decimal A decimal number is a floating point value that consists of a
sign, a numeric value (from 0 to 9), and a scaling factor that
indicates the position of a floating decimal point that separates
the integral and fractional parts of the numeric value. 0 through
+/- (+/-7.9...E+28) with no decimal point; 0 through +/-
7.9228162514264337593543950335 with 28 places to the
right of the decimal.

Double A numeric variable with a wider range 1.79769313486232E308
to -4.940656458412 47E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308.

Currency For holding monetary values.
-922,337,203,685,477.5808 to 922,337,203,685,477.5807.

String For holding text or string values.
0 to approximately 2 billion for variable length.
1 to approximately 65,400 for fixed length.

Byte A numeric variable, holding less than the value 255, 0 to 255.

Boolean For holding True or False values.

Date For holding Date values inclusive of and between January 1,
100 to December 31, 9999.

Object For holding references to objects or pictures in Visual Basic and
other applications.

User defined Number required by elements. The range of each element is the
same as the range of its data type.

Variant A general purpose variable that can hold most other types of
variables values (with number). Any numeric value up to the
range of a Double. With Character values, it has the same
range as for a variable length String.

During the data type declaration, you declare a variable name and its data
type as discussed in the above section. You can declare a variable and its data
type in the following two ways:

 Using explicit declaration.

 Using implicit declaration.

Adding Code
and Using Events

NOTES

Self-Instructional
64 Material

Using Explicit Declaration

In explicit declaration, you use the in-built Visual Basic statement,Dim statement,
to declare a variable name and its data type. TheDim statement does not allow
assigning values to the declared variable. Various data types that can be declared
in Visual Basic usingDim statement are as follows:

 Integer: This data type is used to store whole numbers and cannot be
used in calculations where decimals or fractions are involved. They can
store reasonably large numbers. TheInteger data type occupies only
two bytes of memory and is quite fast when used in calculations. Declaration
for Integer is:

Dim a As Integer

The above declaration definesa as variable of theInteger data type.

 Long Integer: It must be used only where the calculations involve very
large numbers. Declaration for Long Integer is:

Dim x as Long

The above declaration defines x as variable of the Long integer data
type.

 Single: This is the equivalent of the floating point number. It can store
fractions and provide precision to a fairly high level. It occupies 4 bytes of
memory space and should be used where very high precision is not required.
Declaration forSingle is:

Dim x As Single

The above declaration defines x as variable of theSingle data type.

 Double: This solves the problem of precision that the Single data
type lacks. It occupies 8 bytes of memory space and should be used in
applications where the requirement of precision is very high. This is not
advisable for regular commercial applications as it can be fairly slow
compared to theInteger data type and should be used when you want
accuracy in calculations involving figures beyond the fourth decimal point.
Declaration forDouble is:

Dim x as Double

The above declaration defines x as variable of theDouble data type.

 Currency: This data type is used for holding values related to item rates,
payroll details and other financial functions. However, this data type should
not be used if you need extreme accuracy beyond the fourth decimal point.
For example, if you are working on Foreign Exchange details or interest
rates for very large values. Declaration forCurrency is:

Dim salary As Currency

Adding Code
and Using Events

NOTES

Self-Instructional
Material 65

The above declaration defines salary variable of the Currency
data type.

 Byte: This data type can hold values from 0 to 255. It cannot hold negative
numbers or numbers larger than 255. Assigning negative values or values
beyond 255 will result in a runtime overflow error. The Byte data type
occupies only one byte of memory. Declaration forByte is:

Dim salary As Byte

The above declaration defines salary as variable of the Byte data
type.

 Boolean: This data type accepts only True or False values. Since the
default value for all numeric data types is zero, the default value for a
Boolean data type is also zero. The zero value is interpreted asFalse
and a non-zero value is interpreted as True. The VB keywords, True
and False can be used to assign values to the Boolean data type.
Declaration forBoolean is:

Dim b As Boolean

The above declaration defines b as variable of theBoolean data type.

 Date: This variable holds date and time data. It can hold time from January
1 100 to December 31 9999 and time from 00.00.00 (midnight) to 23.59.59
(one second before midnight) in one second increments. It occupies 8 bytes
of memory. The data is displayed as per the settings in your computer. You
can store it in British format, American format or any other format that is
available in the Regional Settings in your control panel.

When other numeric data types are converted to Date, values to the left
of the decimal represent date information, while values to the right of the
decimal represent time. Midnight is 0 and midday is 0.5. Negative whole
numbers represent dates before December 30, 1899. Declaration forDate
is:

Dim Tomorrow As Date

The above declaration definesTomorrow as variable of theDate data
type.

 String: This is the most commonly used data type. Declare a variable
with this data type if it will always contain a string value and not a numeric
value. You can declare the variable as a ‘variable length string or a fixed
length string’. By default, a string variable or argument is a variable length
string; the string grows or shrinks as you assign new data to it.

To declare a fixed length string, you need to specify a fixed length string
with using the following syntax:

Adding Code
and Using Events

NOTES

Self-Instructional
66 Material

Declaration forString is:

Dim ItemName As String * 30 ‘ a fixed length string

Dim ItemName As String ‘ a variable length string

The above declaration defines ItemName as variable of the String
data type. The string ItemName will always be 30 characters long. If
you assign a string of fewer than 30 characters,ItemName will be padded
with enough trailing spaces to total 30 characters. If you assign a string that
is too long for the fixed length string, Visual Basic simply truncates the
characters.

In order to remove trailing spaces while working with fixed length strings,
you can use the functions like Trim andRtrim.

 Object: In Visual Basic, forms, controls, procedures and recordsets are
all considered as objects. All programming activity revolves around these
objects. Since VB is very much an object based programming language, it
is very natural to use Object data types.

An Object variable refers to an object within the application or in
some other application. This object can be a TextBox, a Form or a
database.

A variable declared as anObject is one that can be subsequently assigned
by using the set statement to refer to any actual object recognized by the
application. Declaration forObject is:

Dim obj As Object

The above declaration defines obj as variable of the Object data
type.

 Variant: AVariant data type is a variable that can freely change its
type. It can accept text, number or byte data easily. If you do not supply a
data type, the variable is given the Variant data type by default.
Declaration for Variant data type is:

Dim VarValue

‘Variant by default’.

The above declaration definesVarValue as variable of theVariant
data type.

The Variant data type comes in handy when you are not sure about
the data value. For example, if you are reading a file and you are not sure if
the data is numeric or text or if there is aNull value, then you can use this
data type.

However, the ease with which the conversion takes place can make you
careless. If you are performing calculations, make sure that the value contained in
the Variant is a number.

Adding Code
and Using Events

NOTES

Self-Instructional
Material 67

The program will throw an error if you attempt to perform a mathematical
operation or function on aVariant that does not contain a number. For example,
you cannot perform any arithmetic operations on the value 30+ even though it
contains a numeric character, but the entire value is not a valid number. It is a good
idea to determine if aVariant variable contains a value that can be used as a
number.

If you are performing concatenation then you must make sure that the values
in the variants are strings. It is better to use the “&” operator rather than the “+”
operator.

If both the variants contain numbers, the+ operator performs addition of
these numbers. If both the variants contain strings, then the+ operator performs
string concatenation. However, if one of the values is numeric and the other a
string, then you have a problem. Visual Basic first attempts to convert the string
into a number. If the conversion is successful, the+ operator adds two values; if
unsuccessful, it generates a Type mismatch error.

The fact that Variant data type contains values that other variables
cannot handle makes it special. These values are:

 Null

 Empty

 Error

The Null Value

Null is commonly used in database applications to indicate unknown or missing
data. If you assign Null to a variable of any type other than Variant, an
error occurs. AssigningNull to aVariant variable does not cause an error.

You can also assign Null with theNull keyword as follows:

Z = Null

You can use theIsNull function to test if aVariant variable contains
Null:

If IsNull(X) Then

Debug.print

End If

You can return Null from any function procedure with a Variant
return value. Variables are not set to Null unless you explicitly assign Null
value to them.

The Error Value

In aVariant,Error is a special value used to indicate that an error condition
has occurred in a procedure. An Error value is created by converting a real
number by using theCVErr function.

Adding Code
and Using Events

NOTES

Self-Instructional
68 Material

The Empty Value

A Variant variable has theEmpty value before it is assigned a value. The
Empty value is a special value different from 0, a zero length string (“ ”) or the
Null value.

When a Variant contains the Empty value, you can use it in
expressions, where it is treated as either 0 or a zero length string, depending on
the expression.

The Empty value disappears as soon as any value including 0, a zero
length string or Null is assigned to a Variant variable.

A Variant always takes up 16 bytes, regardless of the type of data
stored in it. Objects, strings and arrays are not physically stored in theVariant.
Four bytes of the Variant are used to hold either an object reference or a
pointer to the string or array. The actual data is stored elsewhere. Based on what
has been discussed above, use theVariant data type only when required. It
takes up space, it is slow, and may also cause errors.

Using Implicit Declaration

You can also use implicit declaration to declare a variable name and its data type.
Visual Basic (VB) defines a special character for each data type. You need to use
that special character at the end of a variable name to declare a data type for that
variable. This type of declaration is known as implicit declaration. Table 4.2 lists
the various data types and their respective special character.

Table 4.2 Data Types and their Respective Special Character

Data Type Special Character

Integer %

Long &

Single !

Double #

Currency @

String $

Byte None

Boolean None

Date None

Object None

Variant None

For example, the following statements declare different variables and their
data types using implicit declarations:

Adding Code
and Using Events

NOTES

Self-Instructional
Material 69

Number% = 12 declares a Number variable of integer data type.
The statement also assigns a value 12 to the Number variable Value$ =
abc declares a Value variable of String data type. The statement also
assigns a string abc to the Value variable.

Most of the data types could hold either string or numeric data, and the
numeric types could hold either integer or floating point values. TheVariant
type is different altogether. A type Variant variable can hold just about any
kind of data string, integer or floating point. Even more amazing (at least to
experienced programmers who are used to the standard fixed data types), the
data in a typeVariant is automatically treated in the appropriate way.

To create a variable or an array of type Variant, you can use the
Variant keyword in your Dim statement or you can simply omit the As
part of the Dim statement, because Variant is Visual Basic default data
type. The following two statements are equivalent:

Dim X As Variant

Dim X

User Defined Data Types

One of the handiest features of VB is the ability to create user defined data types.
A user defined type (also called a structure) is a compound data type containing
two or more other data types. You can define exactly what goes into a structure,
designing it around the exact needs of your program. You use theType...End
Type statement to define a structure.

The following rules apply to user defined data types:

 They can be declared only at the module level.

 They can have Public (project level) or Private (module
level) scope.The default is Public if Public or Private is
specified.

 User defined data types havingPublic scope can be defined only
in standard modules and not in forms.

The following is the syntax for defining a user defined data types:
 [Public | Private] Type TypeName

 Variable1 As datatype

 ...

 Variablen As datatype

 End Type

For example, to define a user defined data types or udt for an employee
record, you might code the following:

 Public Type EmployeeRecord

 strEmpName As String

 dtmHireDate As Date

 sngHourlyRate As Single

 End Type

Adding Code
and Using Events

NOTES

Self-Instructional
70 Material

 However, the definition itself is not sufficient. TheType definition is basically
a ‘template’ on which other variables are defined, the template itself does not
store any data. For using a user defined data type or udt, you must define a
variable ‘As’ the name, following the keyword ‘Type’ (in this case,
‘EmployeeRecord’). For example:

Dim udtEmpRec

As EmployeeRecord

This defines a variable called ‘udtEmpRec’, which has the attributes
defined by the structure ‘EmployeeRecord’. Thus, you refer to
‘udtEmpRec’, in your procedural statements and not ‘EmployeeRecord’.
For referencing a single element of the structure, it should be qualified with the
‘udt’ variable which you have defined. For example, the following code puts
data in the individual elements of udtEmpRec:

udtEmpRec.strEmpName = “JOE SMITH”

udtEmpRec.dtmHireDate = #1/15/2001#

udtEmpRec.sngHrlyRate = 25.50

Any number of variables can be declared ‘As’ the udt that you have
defined. For example:

Dim udtEmpRec2 As EmployeeRecord

Dim audtEmpRec(1 To 10) As EmployeeRecord

Type Declaration Characters

An alternative way of specifying data types while declaring a variable is the use of
some special characters in place of data types. These special characters which
specify the data type are known as type declaration characters. The final character
can be a ‘type declaration character’. Only some of the variable types can use
them as shown in Table 4.3.

Table 4.3 Showing Type Declaration Characters

Data Type Type Declaration Character

String $
Integer %
Long &
Single !
Double #
Currency @

It is not a good idea to use type declaration characters in VB, these days
the practice is to use the ‘As’ clause in a data declaration statement, which is
described as follows.

VB is not case sensitive, i.e., STUDENT, Student and student all refer to
the same variable. If you type a variable on a line in a case different from the case
in which you have declared the variable, VB will change this case to match with
that of the declared variable when you exit that line.

Adding Code
and Using Events

NOTES

Self-Instructional
Material 71

Standard Variable Prefixes

Table 4.4 shows the standard variable name prefixes for data types in variable names.

Table 4.4 Showing Standard Variable Prefixes

Variable Type Recommended Prefix Sample Variable Name

Boolean bln blnDataIsValid
Byte byt bytSmallNum
Currency cur curBigMoney
Date dtm (for ‘Date/Time’) dtmEmpBirthDate
Double dbl dblAnnSalary
Integer int intCounter
Long lng lngBigIntValue
Object obj objExcelApp
Single sng sngHrlyRate
String str strMyWord
Variant vnt (or ‘var’) vntWhatever

 It should be noted that the style of using a lower case, three character prefix
is succeeded by a descriptive name in mixed case. This is the way of naming
variables in all Visual Basic (VB) documentations. The scope of the variable
should be indicated with an additional prefix, which is of one character,
preceding the name of the variable.

Variable Default Values

When you create a variable, Visual Basic (VB) automatically assign a value to it.
This value is known as default value of the variable. The default value of a
variable depends on the data type variable. Default values for different data types
are given in Table 4.5.

Table 4.5 Showing Variable Default Values

Data Type Default Value
Single 0
Byte 0
Integer 0
Long 0
Double 0
String “ ” blank
Boolean False
Variant Empty
Date 0
Currency 0

4.3 DECLARING AND USING VARIABLES

A variable is a named storage location whose contents can be varied or simply a
name you give for a memory area in which the value of data which was utilized by

Adding Code
and Using Events

NOTES

Self-Instructional
72 Material

your program is contained. As the name suggests, it is a location whose contents
can be varied. Like other programming language, VB also supports variables. A
variable has two associated things with it, i.e., a name and its data type.

The variable name is used to refer to the value stored in it and the data type
tells what type of value can be stored in the variable.

Table 4.6 lists the types of VB variables and the corresponding range of
values that they can store.

Table 4.6 Different Data Types with their Description and Range

Adding Code
and Using Events

NOTES

Self-Instructional
Material 73

Variable Naming Conventions

The rules for forming a valid VB variable name are as follows:

 Any of the English alphabets A to Z must function as the first character.
Both upper case or lower case letters may be used. The remaining characters
can be letters, digits or the underscore (_) character.

 As many as 255 characters can be present in a name.

 A space or a period (.) or a hyphen (-) cannot be present in a variable
name.

 A variable name must begin with a letter.

 A reserved word (VB keyword) cannot constitute the name.

Declaring a Variable

Declaring a variable means telling the program about it in advance. A variable can
be declared according to the following syntax:

Syntax

Dim <Variable Name> [As <Datatype>]

Where,

 The keywordDim indicates VB that a variable is being declared.

 <Variable Name> is the variable name provided by the user.

 As is another keyword that tells VB the data types of the variable.

 <Data type> is a legal data type in VB as given in Table 1.16.

For example,

Dim marks As Byte

Dim address As String

Dim rate As Double

If the ‘As’ data type clause is neglected during declaration of a variable, the
variable type defaults toVariant unless a type declaration character is used.
For example, the following two statements both declare an Integer called
‘Counter’ (the ‘As’ version is preferred):

Dim Counter As Integer

Dim Counter%

The following two statements declare a Variant variable called
‘Whatever’:

Dim Whatever As Variant

Dim Whatever

Adding Code
and Using Events

NOTES

Self-Instructional
74 Material

Static Variables

You have learned that local or private variables have lifetimes equal to the runtime
of their procedure. But there is one exception here. If you declare a local variable
with keywordStatic given as follows:

Static <Variable Name> As < Data Type>

The lifetime of the variable changes so that the variable lives on in the memory
even after its parent procedure is over.

Suppose you have aSub in a form called CountDemo that looks like
this:

Private Sub CountDemo()

Dim intI As Integer

Static intJ As integer

 intI = intI + 1

 intJ = intJ + 1

 Print intI , intJ

End Sub

Suppose you have some other Sub that calls CountDemo three times
in a row:

Call CountThem

Call CountThem

Call CountThem

The following output would be displayed on the Form :
values for intI values for intJ

 1 1

 1 2

 1 3

Note that the ‘regular’ variable,intI, declared with ‘Dim’ does not retain
its value between calls, whereas the Static variable,intJ does.

Note: The keyword ‘Static’ can also be used in theSub procedure header,
which causes all variables in that procedure to be static. For example:

Private Static Sub StaticDemo()

 Dim Counter As Integer ‘ as if declared Static

 Dim ErrMsg As String ‘ as if declared Static

 . . . ‘ other statements

End Sub

The following is the syntax for declaring a variable in VB:
[Dim | Private | Public | Static | Global] variablename
[As data type]

Adding Code
and Using Events

NOTES

Self-Instructional
Material 75

Note that you can use any one of the five keywords for declaring a variable,
which one you use depends on the scope you want the variable to have.

The following are the three levels of scope:

 Project Level Scope: It also called ‘global’ or ‘public’ or ‘application’
scope; the variable is accessible to all procedures in all modules of the
project. The variables available to all the modules and procedures in an
a p p l i c a t i o n a r e s a i d t o h a v e P r o j e c t l e v e l s c o p e . Public keyword
declares public or project level variables. Since thePublic variable
are available publicly or globally to all module of the application, these
are also known global variable, i.e., variable with global scope.

 Module Level Scope: It the variable is accessible to all procedures in
the module in which it is declared. Module is a place where you can put
your commonly used routines, functions, constants, etc. In other words,
a module is a place to store commonly used things. These things may be
used in many projects. In VB, there are three kinds of modules namely
form module, standard module and class module. A form module
stores everything related to a form. A standard module stores the
commonly used variables, constant and procedures, etc. Aclass module
stores code to create new objects, the basis of object oriented
programming.

 Private or Local Level: The variable is accessible only to the procedure
in which it is declared. A variable that can be used only in one procedure
in which it is declared is said to have Private or local scope.

In addition to the keyword used for declaring the variable, the site of the
variable declaration also affects its scope. A variable can be declared in any one
of the following two locations:

 The General Declarations Section: This section of a module is
unlabelled, i.e., it is always present at the start of a code module, after
the ‘Option Explicit’ statement but preceding the first Sub or Function
procedure. Declaring a variable here using thePublic orGlobal
keyword makes it a project level variable, i.e., or a module level variable
if the Private or Dim keyword is used.

 Within a Sub or a Function Procedure: Declaring a variable
here makes it a local level variable. Here, the Dim or Static
keyword alone can be used. The usual practice involves declaring all
local variables within a procedure immediately succeeding theSub or
the Function header and preceding any executable statements.

Table 4.7 shows how the five different declarative keywords and the location
of their declaration affect the scope.

Adding Code
and Using Events

NOTES

Self-Instructional
76 Material

Table 4.7 Showing How the Location of Declaration affect Scope

Keyword
Used to
Declare
the
Variable

Where
Declared

General
Declarations
Section of a Form
(.frm) Module

General
Declarations
Section of a
Standard (.bas)
Module

Sub or Function
procedure of a Form
or Standard Module

Dim (preferred keyword
for local, but not module
level variables)

Module level
scope

Module level
scope

Local level scope
(value of the variable
is NOT preserved
between calls

Static Not allowed not allowed Local level scope
(value of the variable
is preserved between
calls)

Private (preferred
keyword for module level
variables)

Module level
scope

Module level
scope

Not allowed

Public
Project level scope
(but references to
the variable must
be qualified with
the form name;
also there are
some minor
restrictions on the
types of variables
that can be
declared as Public
in a form)

Project level
scope

Not allowed

Global (the use of this
keyword is discouraged;
it remains only for
compatibility with older
versions of VB)

Not allowed Project level
scope

Not allowed

Check Your Progress

1. Give the definition of data types.

2. Write down the storage capacity of currency data type.

3. In how many ways you can declare a variable and its data type in Visual
Basic?

4. Why we useInteger data type in Visual Basic?

5. Elaborate on the variant for explicit declaration.

6. What is Error value?

7. Define about the implicit declaration.

8. Explain the term user-defined data types.

9. What is the variable default values?

10. Explain the term variable.

11. State the three levels of scope for declaring variables.

Adding Code
and Using Events

NOTES

Self-Instructional
Material 77

4.4 INTRODUCING OPERATORS

In most of the Visual Basic (VB) programs, various operations such as numerical
and logical operations are performed to carry out a specific task. For each operation
VB specifies a specific symbol, known as operators. Depending on the functioning
of the operations, the operators are categorised into four categories:

 Arithmetic operators
 Relational operators
 Concatenation operators
 Logical operators

4.4.1 Arithmetic Operators

Arithmetic operators are used to perform the numerical operations, such as adding
and multiplying two or more data values. Table 4.7 lists various numerical
operations, their corresponding arithmetic operators, examples and description.

Table 4.7 Arithmetic Operators

Numerical
Operation

Operator Example Description

Addition + Dim x As
Integer

x = 67 + 34

Adds the two values 67 and 34
and assigns the value, which we
get after the addition, to x.
Therefore, the output is x=101

Subtraction - Dim x As Integer

x = 67 - 34

Subtracts the value 34 from 67 and
assigns the value, which we get
after the subtraction, to x. As a
result, the output is x=33

Multiplication * Dim x As Integer

x = 7 * 3

Multiplies the two values 7 and 3
and assigns the value, which we get
after the multiplication, to x.
Therefore, the output is x=21

Division / Dim x As Integer

x = 9 / 3

Divides the value 9 by 3 and
assigns the quotient, which we get
after the division, to x. As a result,
the output is x=3

Modulus Mod Dim x As Integer

x = 7 mod 3

The mod operator divides the value
7 by the value 3 and returns the
remainder. Therefore, the output is

x=1

Exponentiation Dim x As Integer

x = 2 3

 represents that 3 is the
exponential power of 3. As a result,
the output is

x=8

Integer
division

\ Dim x As Integer

x = 7 \3

The integer division returns the
integer quotient without
considering the remainder, if any.
As a result, the output for the
corresponding example is 2.

Adding Code
and Using Events

NOTES

Self-Instructional
78 Material

The following steps show how to use + operator to add the three numbers, 12, 23
and 56:

1. Open the Code window.

2. Click the down arrow button next to the Object drop-down list box and
select the Form control.

3. Click the down arrow button next to the Procedure drop-down list box
and select the Load event.

4. Enter the following lines of code in the Code window:
Private Sub Form_Load()

Dim a As Integer

Dim b As Integer

Dim c As Integer

Dim d As Integer

a = 12

b = 23

c = 56

d = a+b+c

MsgBox d

End Sub

Fig. 4.1 shows the Code window for the + operator

5. Press F5 to compile and execute the code. Figure 4.2 shows the output
after adding the three numbers.

Fig. 4.2 Displaying the Output of the + Operator

Adding Code
and Using Events

NOTES

Self-Instructional
Material 79

4.4.2 Relational Operators

Comparison operators are used to compare the two values of same data type and
return a Boolean value, which represents the relation between the two values. A
Boolean value has only two values, either True or False. These values may be
numerical, strings and objects. Table 4.8 lists various relational operations, their
corresponding comparison operators and description along with examples.

Note: In the following table, we are considering x and y as variables having
values 33 and 22, respectively.

Table 4.8 Relational Operators

Compare
Operation

Comparison
Operator

Example Description

Equality = x = y Returns True if the two values are
equal, else returns False. Here, the
corresponding example returns False
as 33 and 22 are not equal.

Inequality <> x<> y Returns True if the two values are not
equal, else returns False. Here, the
corresponding example returns True as
33 and 22 are not equal.

Less than < x < y Returns True if the first value (value
on the left side of the <) is less than the
second value (value on the right side of
the <), else returns False. Here, the
corresponding example returns False
as 33 is not less than 22.

Greater
than

> x > y Returns True if the first value is greater
than the second value, else returns
False. Here, the corresponding
example returns True as 33 is greater
than 22.

Less than
or equal to

<= x <= y Returns True if the first value is less
than or equal to the second value, else
returns False. Here, the corresponding
example returns False as 33 is neither
equal to nor less than 22.

Greater
than or
equal to

>= x >=y Returns True if the first value is greater
than or equal to the second value, else
returns False. Here, the corresponding
example returns True as 33 is greater
than the 22.

Adding Code
and Using Events

NOTES

Self-Instructional
80 Material

For example, the steps for implementing the Greater than relational operator in
VB are:

1. Open the Code window.

2. Click the down arrow button next to the Object drop-down list box and
select the Form control.

3. Click the down arrow button next to the Procedure drop-down list box
and select the Load event.

4. Enter the following lines of code in the Code window.
Private Sub Form_Load

Dim x As Boolean

Dim a As Integer

Dim b As Integer

 a = 3

 b = 6

x = a >b ‘Returns true if the value of a is greater
than b else returns false

Msgbox x

End Sub

Figure 4.3 shows the Code window for the Greater than operator.

Fig. 4.3 Displaying the Code for Implementing the Greater than Operator

5. Press F5 to compile the above code. Figure 4.4 shows the output after
compiling the Greater than operator.

Fig. 4.4 Displaying the Output for Greater than Operator

Adding Code
and Using Events

NOTES

Self-Instructional
Material 81

4.4.3 Concatenation Operators

Concatenation operators are used to merge two or more strings into a single string.
VB uses the & operator to merge two or more strings. For example, the steps for
implementing the & operator in VB are:

1. Open the Code window.
2. Click the down arrow button next to the Object drop-down list box and

select the Form control.
3. Click the down arrow button next to the Procedure drop-down list box

and select the Load event.
4. Enter the following lines of code in the Code window.

Private Sub Form_Load
Dim x As String
x = “John”
Dim y As String
y = “is”
Dim z As String
z = “boy”
 Dim a As String
 a = x & y & z
Msgbox a
End Sub

Figure 4.5 shows the Code window for concatenation operator

Fig. 4.5 Displaying the Code for the Concatenation Operator

Note: The concatenation operotor combines John, is and boy and sets the variable
a to “Johnisboy”.

5. Press F5 to compile the above code. Figure 4.6 shows the output after
compilation.

Fig. 4.6 Displaying the Output for the Concatenation Operator

Adding Code
and Using Events

NOTES

Self-Instructional
82 Material

You can also use the + operator to concatenate two or more strings. It works
same as the & operator; you just need to replace & with +.

4.4.4 Logical Operators

Logical operators are used to compare Boolean expressions and return a Boolean
result. Table 4.9 lists the various logical operations, their corresponding logical
operators, examples and description.

Table 4.9 Logical Operators

Logical
Operation

Logical
Operator

Example Description

Not
operation

Not Dim x As
Boolean

x = Not 3
> 5

The Not operand performs logical
negation on the Boolean expression. If the
expression evaluates True, then Not
operand returns False and vice-versa. In
the corresponding example, 3 is less than
5, therefore, the Boolean result for 3> 5 is
False. But the Not operand will return
True and as a result, x is set to True.

And
operation

And Dim x As
Boolean

x = 3 > 5
And 4<5

The And operand returns logical
conjunction of the two Boolean
expressions. It returns True only if both
the Boolean expressions return True, else
it returns False. In the corresponding
example, first Boolean expression (3 > 5)
returns False and the second Boolean
expression (4<5) returns True. As one of
the expressions is returning False, the
And operand returns False.

Or
operation

Or Dim x As
Boolean

x = 3 > 5
Or 4<5

The Or operand returns logical
disjunction of the two Boolean
expressions. It returns True if any one of
the Boolean expressions returns True, else
it returns False. In the corresponding
example, first Boolean expression (3 > 5)
returns False and the second Boolean
expression (4<5) returns True. As one of
the expressions is returning True, the Or
operand returns True.

Xor
operation

Xor Dim x As
Boolean

x = 3 > 5
Xor 4<5

The Xor operand returns logical exclusion
of the two Boolean expressions. It returns
True if exactly only one of the Boolean
expressions returns True, else it returns
False. In the corresponding example, both
the expressions are returning True. As
more than one expression is returning
True, the Xor operand returns False.

For example, the steps for implementing the And logical operator in VB are:

1. Open the Code window.

2. Click the down arrow button next to the Object drop-down list box and
select the Form control.

3. Click the down arrow button next to the Procedure drop-down list box
and select the Load event.

Adding Code
and Using Events

NOTES

Self-Instructional
Material 83

4. Enter the following lines of code in the Code window.
Private Sub Form_Load
Dim x As Boolean
Dim a As Integer
Dim b As Integer
Dim c As Integer
Dim d As Integer
a = 3
b = 6
c = 7
d = 1
x = a >b And c > d
Msgbox x
End Sub

Figure 4.7 shows the Code window for the And operator.

Fig. 4.7 Displaying the Code for Implementing the and Operator

5. Press F5 to compile the above code. Figure 3.8 shows the output after
compiling the And operator.

Fig. 4.8 Displaying the Output

Check Your Progress

12. How many type of operators are used in Visual Basic.

13. MOD is which type of operator in VB?

14. Why Arithmetic operators are used in VB?

15. Name any two relational operators.

Adding Code
and Using Events

NOTES

Self-Instructional
84 Material

4.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Data type is a programming element which is determine how the bits/bytes
representing the values are stored in computer memory.

2. Storage capacity of currency data type is -922,337,203,685,477.5808 to
922,337,203,685,477.5807.

3. You can declare a variable and its data type in the following two ways:

 Using explicit declaration.

 Using implicit declaration.

4. Integer data type is used to store whole numbers and cannot be used in
calculations where decimals or fractions are involved.

5. AVariant data type is a variable that can freely change its type. It can
accept text, number or byte data easily. If you do not supply a data type,
the variable is given theVariant data type by default.

6. The Error Value In a Variant, Error is a special value used to
indicate that an error condition has occurred in a procedure. An Error
value is created by converting a real number by using theCVErr function.

7. An alternative way of specifying data types while declaring a variable is the
use of some special characters in place of data types. These special characters
which specify the data type are known as type declaration characters. The
final character can be a ‘Type Declaration Character’. For Example
String $

Integer %

Long &

Single !

Double #

Currency @

8. A user defined type (also called a structure) is a compound data type
containing two or more other data types.

9. When you create a variable, VB automatically assign a value to it. This
Values is known as default value of the variable.

10. A variable is a named storage location whose contents can be varied or
simply a name you give for a memory area in which the value of data which
was utilized by your program is contained.

11. The following are the tree level of scope for declaring variable:

 Project level scope

Adding Code
and Using Events

NOTES

Self-Instructional
Material 85

 Module level scope

 Private or local level

12. Various operators used in Visual Basic are:

a. Arithmetic operators

b. Relational operators

c. Concatenation operators

d. Logical operators

13. MOD is an arithmetic operator.

14. Arithmetic operators are used to perform the numerical operations such as
adding and multiplying two or more data values.

15. Following are the two relational operators:

 Equality

 Inequality

4.6 SUMMARY

 Every programming element, such as variable, literal, constant, procedure,
etc. has a data type.

 Visual Basic (VB) have a name and declared data type. The data type of a
programming element determines how the bits/bytes representing these values
are stored in the computer memory.

 Therefore, you have at least two types of variables. Visual Basic has a
number of variable types to deal with various programming requirements.

 One needs to use different types of variables for different requirements in
order to optimize speed and memory requirements.

 Data types can be applied to other elements also besides variables. When
you assign a value to a property, that value has a data type.

 In fact, just about anything in Visual Basic that involves data also includes
data types.

 In explicit declaration, you use the in-built Visual Basic statement, Dim
statement, to declare a variable name and its data type. The Dim statement
does not allow assigning values to the declared variable.

 Integer data type is used to store whole numbers and cannot be used in
calculations where decimals or fractions are involved. They can store
reasonably large numbers.

 Long Integer must be used only where the calculations involve very large
numbers.

Adding Code
and Using Events

NOTES

Self-Instructional
86 Material

 Single is the equivalent of the floating point number. It can store fractions
and provide precision to a fairly high level.

 Double solves the problem of precision that the Single data type lacks. It
occupies 8 bytes of memory space and should be used in applications where
the requirement of precision is very high.

 Currency data type is used for holding values related to item rates, payroll
details and other financial functions.

 Byte data type can hold values from 0 to 255. It cannot hold negative
numbers or numbers larger than 255. Assigning negative values or values
beyond 255 will result in a runtime overflow error.

 Boolean data type accepts only True or False values. Since the default
value for all numeric data types is zero, the default value for a Boolean data
type is also zero. The zero value is interpreted as False and a non-zero
value is interpreted as True.

 Date variable holds date and time data. It can hold time from January 1 100
to December 31 9999 and time from 00.00.00 (midnight) to 23.59.59
(one second before midnight) in one second increments. It occupies 8 bytes
of memory.

 The data is displayed as per the settings in your computer. You can store it
in British format, American format or any other format that is available in the
Regional Settings in your control panel.

 String is the most commonly used data type. Declare a variable with this
data type if it will always contain a string value and not a numeric value.

 In Visual Basic, forms, controls, procedures and recordsets are all considered
as objects.

 A Variant data type is a variable that can freely change its type. It can
accept text, number or byte data easily. If you do not supply a data type,
the variable is given the Variant data type by default.

 Null is commonly used in database applications to indicate unknown or
missing data. If you assign Null to a variable of any type other than Variant,
an error occurs. Assigning Null to a Variant variable does not cause an
error.

 In a Variant, Error is a special value used to indicate that an error condition
has occurred in a procedure. An Error value is created by converting a real
number by using the CVErr function.

 A Variant variable has the Empty value before it is assigned a value. The
Empty value is a special value different from 0, a zero length string (“ “) or
the Null value.

 You can also use implicit declaration to declare a variable name and its data
type. VB defines a special character for each data type.

Adding Code
and Using Events

NOTES

Self-Instructional
Material 87

 You need to use that special character at the end of a variable name to
declare a data type for that variable.

 Most of the data types could hold either string or numeric data, and the
numeric types could hold either integer or floating point values.

 One of the handiest features of VB is the ability to create user defined data
types.

 A user defined type (also called a structure) is a compound data type
containing two or more other data types. You can define exactly what goes
into a structure, designing it around the exact needs of your program.

 This defines a variable called ‘udtEmpRec’, which has the attributes defined
by the structure ‘EmployeeRecord’. Thus, you refer to ‘udtEmpRec’, in
your procedural statements and not ‘EmployeeRecord’.

 An alternative way of specifying data types while declaring a variable is the
use of some special characters in place of data types. These special
characters which specify the data type are known as type declaration
characters. The final character can be a ‘type declaration character’.

 It should be noted that the style of using a lower case, three character prefix
is succeeded by a descriptive name in mixed case. This is the way of naming
variables in all VB documentations.

 When you create a variable, VB automatically assign a value to it. This
value is known as default value of the variable.

 A variable is a named storage location whose contents can be varied or
simply a name you give for a memory area in which the value of data which
was utilized by your program is contained.

 As the name suggests, it is a location whose contents can be varied. Like
other programming language, VB also supports variables. A variable has
two associated things with it, i.e., a name and its data type.

 The variable name is used to refer to the value stored in it and the data type
tells what type of value can be stored in the variable.

 Any of the English alphabets A to Z must function as the first character.
Both upper case and lower case letters may be used. The remaining
characters can be letters, digits or the underscore (_) character.

 Declaring a variable means telling the program about it in advance.

 If the ‘As’ data type clause is neglected during declaration of a variable, the
variable type defaults to Variant unless a type declaration character is used.

 Project Level Scope also called ‘global’ or ‘public’ or ‘application’ scope;
the variable is accessible to all procedures in all modules of the project.

 The variables available to all the modules and procedures in an application
are said to have Project level scope.

Adding Code
and Using Events

NOTES

Self-Instructional
88 Material

 Public keyword declares public or project level variables. Since the Public
variable are available publicly or globally to all module of the application,
these are also known global variable, i.e., variable with global scope.

 Module Level Scope is the variable is accessible to all procedures in the
module in which it is declared.

 Module is a place where you can put your commonly used routines,
functions, constants, etc. In other words, a module is a place to store
commonly used things. These things may be used in many projects.

 In VB, there are three kinds of modules namely form module, standard
module and class module.

 A form module stores everything related to a form. A standard module
stores the commonly used variables, constant and procedures, etc.

 A class module stores code to create new objects, the basis of object
oriented programming.

 The variable is accessible only to the procedure in which it is declared. A
variable that can be used only in one procedure in which it is declared is
said to have Private or local scope.

 The General Declarations section of a module is unlabelled, i.e., it is always
present at the start of a code module, after the ‘Option Explicit’ statement
but preceding the first Sub or Function procedure.

 Declaring a variable here using the Public or Global keyword makes it a
project level variable, i.e., or a module level variable if the Private or Dim
keyword is used.

 Declaring a variable here makes it a local level variable. Here, the Dim or
Static keyword alone can be used.

 The usual practice involves declaring all local variables within a procedure
immediately succeeding the Sub or the Function header and preceding any
executable statements.

 In most of the VB programs, various operations such as numerical and
logical operations are performed to carry out a specific task.

 For each operation VB specifies a specific symbol, known as operators.
 Arithmetic operators are used to perform the numerical operations such as

adding and multiplying two or more data values.
 Comparison operators are used to compare the two values of same data

type and return a Boolean value, which represents the relation between the
two values.

 A Boolean value has only two values, either True or False. These values
may be numerical, strings and objects.

 Concatenation operators are used to merge two or more strings into a
single string. VB uses the AND operator to merge two or more strings.

 Logical operators are used to compare Boolean expressions and return a
Boolean result.

Adding Code
and Using Events

NOTES

Self-Instructional
Material 89

10.7 KEY WORDS

 Subroutines: Subroutines can be thought of as miniature programs. A
subroutine has a name attributed with it, much like a variable does.

 Dim Statement: An in-built VB statement to declare a variable name and
its data type.

 Constant: It is a value given to a variable.

 Data type: It is a classification identifying one of the various types of data.

 Variable: It is a named storage location whose contents can be varied.

 Function: It refers to block of code that performs a specific task in a
computer program.

 Integer: It refers to a data type in computer science that represents some
finite subset of the mathematical integers.

 Syntax: It refers to the rules governing the formation of statements in a
programming language.

 Operators: Various operations such as numerical and logical operations
are performed to carry out a specific task. For each operation VB specifies
a specific symbol, known as operators.

4.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Why we use Dim statement?

2. Give the definition of variable.

3. Explain about the data type.

4. How will you define a Boolean constant?

5. Write the rules for defining data types.

6. What are the two ways to declare a variable?

7. Explain the term Boolean for data type.

8. What is null value for explicit declaration?

9. Define the term user defined data types.

10. State about the private or local level.

11. How many types of arithmetic operators are used in Visual Basic (VB) for
performing mathematical calculations?

Adding Code
and Using Events

NOTES

Self-Instructional
90 Material

Short-Answer Questions

1. Briefly discuss about the data types and storage capacity table in Visual
Basic giving examples.

2. Explain about the different ways to declare a variable and its data types
giving syntax and example codes.

3. Discuss about the conventions used for naming a variable.
4. Differentiate between the explicit and implicit declarations giving example.
5. Elaborate on the defined data types and the alternate way of specifying

data types while declaring a variable with the help of examples.
6. Briefly discuss the static variables and different scopes for static variables

giving approprite examples.
7. Analyse about the general declarations section and sub function procedure

giving approprite examples.
8. Expressions used for various logical operator.
9. Elaborate briefly on the arithmetic operators which are used in VB for

performing mathematical calculations.

4.9 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Looping and Decision
Control Structures

NOTES

Self-Instructional
Material 91

UNIT 5 LOOPING AND DECISION
CONTROL STRUCTURES

5.0 Introduction
5.1 Objectives
5.2 Looping and Decision Control Structures

5.2.1 Decision Structure
5.2.2 Loop Structure

5.3 Answers to Check Your Progress Questions
5.4 Summary
5.5 Key Words
5.6 Self-Assessment Questions and Exercises
5.7 Further Readings

5.0 INTRODUCTION

Visual Basicis a graphical version of the old BASIC (Beginner’s All-purpose
Symbolic Instruction Code) language that was quite popular among programmers.
It is a highly interactive and is a Graphical User Interface (GUI) programming
language. This language increases the productivity of programmers by providing
various features to create effective and robust.

The capacity to make decisions is needed for a useful machine.

The secret to programming the machine to make the right choices is to
ensure that you understand how to accurately analyse and evaluate the expression
that represents the decision.

Visual Basic offers more than one way for decisions to be made.

To make a program more flexible and efficient, the flow of execution can be
altered using various control statements. Different types of control flow statements,
such as selection statements and iteration statements.

Control Structures are just a way to specify flow of control in programmes.
Any algorithm or software will be more transparent and understood if they use
self-contained modules called as logic or control structures. Depending on such
parameters or conditions, it essentially analyses and chooses the direction in which
a programme flows.

There could be a case where you need to execute a code block many
times. In general, statements are executed sequentially in a function, the first statement
is executed first, followed by the second statement, and so on. Programming
languages provide different structures of control that allow more complicated paths
of execution.A loop statement allows one several times to execute a statement or
set of statements.

Looping and Decision
Control Structures

NOTES

Self-Instructional
92 Material

In this unit, you will study about the looping and decision control structure,
if then else, structure select structure, for next, do while and while… wend.

5.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the different types of control statements in VB.NET

 Explain the various types of selection statements

 Discuss the different types of iteration statements

 Know about the for… next loop
 Elaborate on the select structure

 Define the basics of do ... while and while…wend

5.2 LOOPING AND DECISION CONTROL
STRUCTURES

Statements are used to control the flow of program execution control. Visual Basic
supports various control statements given as follows:

5.2.1 Decision Structure

Structures for decision-making enable the programmer to define one or more
conditions to be evaluated or checked by the program, along with a statement or
statements to be executed if the condition is determined to be valid, and other
statements to be executed optionally if the condition is determined to be false.

To be assessed by the program with statements, we can specify more than
one condition. If the given condition is valid, the statement or block is executed
according to the condition, and another statement is executed if the condition is
false.

If ...Then Structure

The If...Then selection structure performs the specified action only when the
condition is True. If condition is false, no action is taken.

The Syntax of the If...Then selection :
If < condition > Then

statement

End If

The Example of the If...Then selection :
If gradepoint = 9 Then

txtGrade.Text = “A+”

End If

Looping and Decision
Control Structures

NOTES

Self-Instructional
Material 93

If ... Then …Else Structure

The If ...Then … Else selection structure is useful when you want to execute the
specified statements when the condition is True and you have different statements
for different conditions.

The Syntax of the If ...Then selection :
If < condition 1 > Then

statement

ElseIf < condition 2 > Then

statement

Else

statement

End If

The Example of the If...Then selection
If gradepoint = 9 Then

txtGrade.Text = “A+”

ElseIf gradepoint = 8 Then

txtGrade.Text = “A”

ElseIf gradepoint = 7 Then

txtGrade.Text = “A-”

Else

txtGrade.Text = “Invalid”

End If

Select ...Case Statement

The Select ...Case structure helps to get rid of the long series of If statements. This
structure tests the condition just once. It executes one of the several groups of
statements on the expression.

The Syntax of the Select ...Case statement :

Select Case testexpression

Case expression1

Statements

Case expression2

Statements

Case Else

Statements

End Select

The Example of the Select ...Case statement :
Select Case ascivariable

Case 64

Looping and Decision
Control Structures

NOTES

Self-Instructional
94 Material

MsgBox “a”

Case 65

MsgBox “b”

Case 66

MsgBox “c”

Case Else

MsgBox “Invalid Number”

End Select

Note that the term Select used in the Select...Case statement
specifies a keyword that shows the starting point of theSelect...Case statement
and holds a test expression.testexpression specifies an integral expression
defined by usingInteger andChar data types. Case in Visual Basic specifies
a keyword that holds an expression list which fulfils the testexpression.
Case Else specifies a keyword that runs the code within the Case Else
block when none of the cases within the

Select...Case statement executes.

TheSelect...Case statement tests the value of the test expression in a
sequence and compares it with the list of different cases. When a match is found,
the control is transferred to that particularCase block and the statements contained
in that particularCase block are executed.

Example 5.1: A program to demonstrate the use of nestedSelect...Case
statement.

Imports System. Console

Module Module1

Sub Main ()

Dim value1 As Integer

WriteLine (“Enter your choice”)
value1 = Integer. Parse (ReadLine ())

Select Case value1

Case 1

WriteLine (“You typed one”)
Case 2

WriteLine (“You typed two”)
Case 5

WriteLine (“You typed five”)
Case Else

WriteLine (“You typed something else”)
End Select

Read ()

End Sub

End Module

Looping and Decision
Control Structures

NOTES

Self-Instructional
Material 95

The output of the program is

5.2.2 Loop Structure

There could be a case where you need to execute a code block many times. In
general, statements are executed sequentially in a function, the first statement is
executed first, followed by the second statement, and so on.

Programming languages provide different structures of control that allow
more complicated paths of execution. A loop statement allows us to execute a
statement or group of statements multiple times.

Do ... While Loop

The Do loop structure executes a series of statements as long as a given condition
is true. It allows you to check a condition and execute a code block, if that condition
is true. The Do...While version allows you to check for the true condition. You
ceruse a Do...Until version until you check for a false.

The Syntax of the Do loop Structure :
Do [{ While | Until } condition]

Statements

Loop

Or

Do

Statements

Loop [{ While | Until } condition]

The Example of the Do loop Structure :
Dim count as Integer

Dim sum as Integer

Count = 1

Looping and Decision
Control Structures

NOTES

Self-Instructional
96 Material

Sum = 0

Do While count < 10

Sum = sum + count

Count = count + 1

Loop

Txt_sum.Text = sum

While...Wend

The While ...Wend statement executes a series of statements as long as the given
condition is true.

The Syntax of the While...Wend statement :
While Condition

Statements

Wend

The Example of the While ...Wend statement :
Dim count As Integer

 Dim sum As Integer

 count = 1

 sum = 0

 While count < 10

 sum = sum + count

 count = count + 1

 Wend

 txt_sum.Text = sum

For ... Next

The For … Next executes the block of code a fixed number of times.
The Syntax of the For …Next Structure :

For variable initial_value to Final_value Step increment or decrement
Statements
Next

The Example of the For …Next Structure :
Dim I as Integer

For I = 100 To 1 Step -10

Print I

Next I

Looping and Decision
Control Structures

NOTES

Self-Instructional
Material 97

Check Your Progress

1. What are the decision structures available in Visual Basics?
2. Why we use if … then … else structure in Visual Basic?
3. What is a select...case statement in VB.NET?
4. Write down the syntax of aelect … case statement.
5. Name the looping structures in Visual Basic.
6. Which statement executes at least once and continues executing until its

loop-continuation condition becomes False.
7. Write down the syntax for the while …wend statement.

5.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Following are the decision structure available in Visual Basic:
If …Then
If … Then … Else
Select … Case

2. The If ...Then … Else selection structure is useful when you want to execute
the specified statements when the condition is True and you have different
statements for different conditions.

3. The Select ...Case structure helps to get rid of the long series of If statements.
This structure tests the condition just once. It executes one of the several
groups of statements on the expression.

4. The Syntax of the Select ...Case statement :
Select Case testexpression
Case expression1
Statements
Case expression2
Statements
Case Else
Statements

End Select

5. Following are the looping structure in Visual Basic :
Do … While Loop
While…Wend
For…Next

6. Do… statement executes at least once and continues executing until its
loop-continuation condition becomes False.

7. The Syntax of the While...Wend statement is :
While Condition
Statements

Wend

Looping and Decision
Control Structures

NOTES

Self-Instructional
98 Material

5.4 SUMMARY

 Statements are used to control the flow of program execution control.

 The If...Then selection structure performs the specified action only when
the condition is True.

 The If ...Then … Else selection structure is useful when you want to execute
the specified statements when the condition is True and you have different
statements for different conditions.

 Select...Case statement specifies a keyword that shows the starting point
of the Select...Case statement and holds a test expression. testexpression
specifies an integral expression defined by using Integer and Char data
types.

 Case in Visual Basic specifies a keyword that holds an expression list which
fulfils the testexpression. Case Else specifies a keyword that runs the code
within the Case Else block when none of the cases within the Select...Case
statement executes.

 The Select...Case statement tests the value of the test expression in a
sequence and compares it with the list of different cases.

 When a match is found, the control is transferred to that particular Case
block and the statements contained in that particular Case block are executed.

 The Select ...Case structure helps to get rid of the long series of If statements.
This structure tests the condition just once. It executes one of the several
groups of statements on the expression.

 The Do loop structure executes a series of statements as long as a given
condition is true. It allows you to check a condition and execute a code
block, if that condition is true.

 The Do-While version allows you to check for the true condition. You ceruse
a Do-Until version until you check for a False.

 The While ...Wend statement executes a series of statements as long as the
given condition is True.

 The For … Next executes the block of code a fixed number of times.

5.5 KEY WORDS

 Control statements: Control the flow of a program during execution.

 Declaration: Declares the variables to store the property value.

 Library functions: The built-in functions which are defined in the Visual
Basic (VB) library.

 Decision structure: Structures for decision-making enable the programmer
to define one or more conditions to be evaluated or checked by the program,

Looping and Decision
Control Structures

NOTES

Self-Instructional
Material 99

along with a statement or statements to be executed if the condition is
determined to be valid, and other statements to be executed optionally if
the condition is determined to be false.

 Loop structure: There could be a case where you need to execute a code
block many times. In general, statements are executed sequentially: in a
function, the first statement is executed first, followed by the second
statement, and so on.

5.6 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Explain control flow statements.

2. Elaborate on the purpose of decisions-making statements.

3. State the looping statements.

4. What are the ways to create an infinite loop?

5. Explain if …then, select ... case, looping statements.
6. Write a program to find the area of a circle.

7. Write a code to demonstrate the use of nested Select...Case statement.

Long-Answer Questions

1. Briefly discuss the looping and decision control structures in VB giving
apprppriate examples.

2. Rewrite the following VB code using on Switch statement. Also specify
how it is different than previous code.

If(ch=’a’ Or ch=’A’) then
 countA+=1

ElseIf(ch=’e’ Or ch=’E’) then
 countE+=1

ElseIf(ch=’i’ Or ch=’I’) then
 countI+=1

ElseIf(ch=’o’ Or ch=’O’) then
 countO+=1

ElseIf(ch=’u’ Or ch=’U’) then
 countU+=1

Else : Console.WriteLine(“No vowel letter”)
End If

3. Write a simple program to print three statement in Visual Basic.

4. Write a code to check whether the number is even or odd.

Looping and Decision
Control Structures

NOTES

Self-Instructional
100 Material

5. Write a program to display the Days name using the select case statement
in VB.NET.

6. Write a program to perform an arithmetic operation using the Select ...
Case statement in VB.NET.

7. Write a program to compute the total number of students who have passed
in the FIRST, SECOND and THIRD division. The condition is:

Total Marks > 60 – First Class
Total Marks > 50 – Second Class
Total Marks > 40 – Third Class
Total Marks < 40 – Fail

8. Discuss the following with the help of examples

Do …loop
For…Next loop
While…Wend

5.7 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 101

UNIT 6 USING INTRINSIC VISUAL
BASIC CONTROLS WITH
METHODS AND
PROPERTIES

6.0 Introduction
6.1 Objectives
6.2 Basic Controls
6.3 Control Array
6.4 Answers to Check Your Progress Questions
6.5 Summary
6.6 Key Words
6.7 Self-Assessment Questions and Exercises
6.8 Further Readings

6.0 INTRODUCTION

Visual Basic (VB) comes with many built-in controls. All controls are not equally
useful. Some of them are very useful. They can be used in every application you
write. Others you will use only when you have a special need for the features the
controls offer.

Controls are objects that combine code with visual parts. They require a
container i.e., as an object (like form or any other control) that carries the control.
The developer part of the control includes an icon for the ToolBox. The part of the
control has visual representation when it is placed on a container, such as a form.
Control has properties, method and events, which are collectively known, as
controls interface.

The creator of the control is responsible for the programming that enables
the interface: for making sure that properties appear in the properties window, that
events are fired when they are supposed to be fired, etc. The user of the control
does not see the internal implementation of the control application. The users
interaction with the control depends on the interface settings that the application
developer has made and on code added by the developer.

In Visual Basic (VB), a control array is a group of related controls in a Visual
Basic form that share the same event handlers. Control arrays are always single-
dimensional arrays, and controls can be added or deleted from control arrays at
runtime. One application of control arrays is to hold menu items, as the shared
event handler can be used for code common to all of the menu items in the control
array.

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
102 Material

Control arrays are a convenient way to handle groups of controls that perform
a similar function. All of the events available to the single control are still available
to the array of controls, the only difference being an argument indicating the index
of the selected array element is passed to the event. Hence, instead of writing
individual procedures for each control Visual Basic intrinsic centrals, methods and
properties, such as, you only have to write one procedure for each array.

In this unit, you will study about the basic Controls like Label, TextBox,
Command Button, Frame, Checkbox, Option Button, ListBox, ComboBox, File
ListBox, Directory List Box, Drive List Box and Tab Order.

6.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the significance of various controls

 Explain about the TextBox and Label Control

 Define the CommandButton and OptionButton

 Discuss about the CheckBox and ListBox Control

 Elaborate on the concept of methods and Events of various controls

 Know about the control arrays

6.2 BASIC CONTROLS

In Visual Basic, forms are the foundations you generally use to build programs. A
form is where you put all the things that people interact with as they use your
program. Those things you put on the form are controls, which enable the people
who use your program to do things, such as enter text and click buttons.

All the controls in the ToolBox except the Pointer are referred as objects in
VB. These objects have associated properties, methods and events. The
programming objects are loaded with properties. A property is a named attribute
of a programming object. Properties define the characteristics of an object, such
as size, color, etc., or sometimes the way in which it behaves.

For the most part, you’ll use a relatively small set of controls when you
program in Visual Basic. However, these controls are very powerful. With them,
you can add buttons, check boxes, labels, and text boxes to your programs. You
can use them to see files on your hard drive right from your program. You can
even read a database! These basic controls are intrinsic controls, and they’re
available in every edition of Visual Basic 6.

The intrinsic controls are available whenever you use Visual Basic. During
design time, you can access them from the ToolBox . Table 6.1 lists the intrinsic
controls.

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 103

Table 6.2 Different Types of Intrinsic Controls and their Description

Control Description

Pointer Used for interacting with the controls on the form.
PictureBox Used for displaying images.
TextBox Used for accepting user input that can display only editable

text.
Frame Used for grouping other controls.
CommandButton Used for initiating an action by pressing on the button.
CheckBox Used for making a choice for user (checked or unchecked).
OptionButton Used in groups where one at a time can be true.
ListBox Used for providing a list of items.
ComboBox Used for providing a short list of items.
HScrollBar A horizontal scrollbar.
VScrollBar A vertical scrollbar.
Timer Used for performing tasks at particular intervals.
DriveListBox Used for accessing the system drives.
DirListBox Used for accessing the directories on the system.
FileListBox Used for accessing the files in the directory.
Shape Used for drawing circles, squares, rectangles, ellipses, etc.
Line Used for drawing lines.
Image Used for displaying images but has less capability than the

PictureBox.
Data Used for connecting a database.
OLE Used for interacting with other application of Windows.

Label Used for displaying texts that cannot be edited.

Syntax and Attributes of Controls

A control is an object that can be drawn on a Form object for enabling or enhancing
user interaction with an application. Controls have properties for defining various
aspects of their appearance like size, position and color, and the behavioral aspects
like their response to input from a user. They can react to events set off by the
system or initiated by the user. A code, for instance, could be written in a
CommandButton control’s click event procedure that would load a file or
display a result.

Container Control

A container control can hold other controls within it, for example, a Frame (there
can be multiple controls inside a frame) or a Picture Box (it holds a picture) or
simply your Form (you can put so many controls on it). Controls inside containers
are known as child controls. Child controls can exist completely inside their
containers. So you cannot move them outside their container and if you try to drag
them beyond the boundary of their container, part of the control gets hidden.
When you delete a container control, all its child controls automatically get deleted.

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
104 Material

Form Control

In VB, the Form acts as the container for all the controls that form the interface.
The Form is the top-level object in a VB application, and every application starts
with the Form.

Appearance of Forms

The main characteristic of a Form is the title bar on which the Forms caption is
displayed. On the left end of the title bar is the Control Menu icon. Clicking this
icon opens the control menu. Maximize, Minimize and Close buttons can be found
on the right side of the Form. Clicking on these buttons performs the associated
function. Figure 6.1 illustrates the appearance of a Form.

Minimize
Button

Maximize
Button Close

Button

Title Bar

Control Menu
Restore
Move
Size
Minimize
Maximize

Close Alt+F4

Fig. 6.1 General Appearance of Frequently Used Container Control Form

The control menu contains the following characteristics:
 Restore: Restores a maximized Form to its size before it was maximized;

available only if the Form has been maximized
 Move: Lets the user move the Form around with the mouse
 Size: Lets the user resize the control with the mouse
 Minimize: Minimizes the Form
 Maximize: Maximizes the Form
 Close: Closes the Form
Some common properties used to customize a Form appearance are as

follows:

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 105

Table 6.2 Common Properties of Form Control

Property Description
MinButton,
MaxButton

These two properties, if True, display the Minimize and
Maximize buttons on the title bar. You can set them to False to
hide the corresponding button on the title bar. By default True.

ControlMenu This property displays the control menu, if it is set to True . By
default, it isTrue. You can set it toFalse to hide the Control
menu icon..

BorderStyle Thisproperty determines the border’s style for a Form and also
its appearance. It can take any of the following values:

Value Description
0 None No border for Form, cannot be

resized.
1 Fixed Single Visible border, but Form cannot be

resized.
2 Sizable Visible border. Form can be moved

and resized also.
3 Fixed Dialog For fixed dialog boxes.
4 Fixed

ToolWindow
Form has a close button only, canot
be resized.

5 Sizeable
ToolWIndow

Same as no. 4 but the Form can be
resized.

BackColor Specifies the Form’s background color.
BorderStyle Determines how the Form window appears.
Enabled Determines whether the Form is active or not
Picture Determines a graphic image that appears on the background

of the Form at runtime.

Frame Control

AFrame control is used to group various controls. A Frame control is a container
control, i.e., it contains other controls in it; it does not carry out any job/action by
itself, i.e., it does not respond to any event by itself.

Some common properties of Frame control are as follows:

Table 6.3 Common Properties of Frame Control

Property Description

Caption The property used to display the text in the Frame control.

Font The property used to specify the display font, style and size of the caption of
the Frame.

(Name) The property used to name the Frame control. Frame is represented in
coding by using this name.

BorderStyle The property used to specify the style of border. It can be either 0—None or
1—Fixed Single. It appears under the Appearance category.

Appearance The property used to set the look of the frame. It can either be 0—Flat or 1—
3D.

Visible The property used to set a value indicating whether the frame should be
visible or not.

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
106 Material

TextBox Control

A TextBox control is an edit field or edit control, displaying information entered at
design time by the user, or assigned to the control using code at runtime. Basically,
the TextBox control is a small text editor that provides all the basic text-editing
facilities; you can insert and select a text, scroll the text if it does not fit in its visible
area and you can even exchange text with other application through the clipboard.

Some common properties and methods of TextBox control are as follows:

Table 6.4 Common Properties of TextBox Control

Property/ Method Description

Properties

Enabled Specifies whether the user can interact with this control or not.

Index Specifies the control array index.

Locked
If this control is set to True, the user can use it; else, if this control is set to
false, the user cannot use the control.

MaxLength
Specifies the maximum number of characters to be input. Default value is set
to 0 meaning the user can input any number of characters.

MousePointer Using this, the shape of the mouse pointer can be set when over a TextBox.

Multiline
By setting this property to True, there can be more than one line in the
TextBox.

PasswordChar This specifies mask character to be displayed in the TextBox.

ScrollBars This is for setting either the vertical or horizontal scrollbars for appearing in
the TextBox. The user can also set it to both the horizontal and vertical
scrollbars. This property is used with the Multiline property.

Text Specifies the text to be displayed in the TextBox at runtime.

ToolTipIndex This is used for displaying the text that is displayed in the control.

Visible
By setting this, the Textbox control can be made visible or invisible at
runtime.

Methods

SetFocus Transfers focus to the TextBox.

Event procedures

Change Action happens when the TextBox changes.

Click Action happens when the TextBox is clicked.

GotFocus Action happens when the TextBox receives the active focus.

LostFocus Action happens when the TextBox loses it focus.

KeyDown Called when a key is pressed while the TextBox has the focus.

KeyUp Called when a key is released while the TextBox has the focus.

Property/ Method Description

Properties

Enabled Specifies whether the user can interact with this control or not.

Index Specifies the control array index.

Locked
If this control is set to True, the user can use it; else, if this control is set to
false, the user cannot use the control.

MaxLength
Specifies the maximum number of characters to be input. Default value is set
to 0 meaning the user can input any number of characters.

MousePointer Using this, the shape of the mouse pointer can be set when over a TextBox.

Multiline
By setting this property to True, there can be more than one line in the
TextBox.

PasswordChar This specifies mask character to be displayed in the TextBox.

ScrollBars This is for setting either the vertical or horizontal scrollbars for appearing in
the TextBox. The user can also set it to both the horizontal and vertical
scrollbars. This property is used with the Multiline property.

Text Specifies the text to be displayed in the TextBox at runtime.

ToolTipIndex This is used for displaying the text that is displayed in the control.

Visible
By setting this, the Textbox control can be made visible or invisible at
runtime.

Methods

SetFocus Transfers focus to the TextBox.

Event procedures

Change Action happens when the TextBox changes.

Click Action happens when the TextBox is clicked.

GotFocus Action happens when the TextBox receives the active focus.

LostFocus Action happens when the TextBox loses it focus.

KeyDown Called when a key is pressed while the TextBox has the focus.

KeyUp Called when a key is released while the TextBox has the focus.

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 107

For working with a part of a text in a TextBox, the text can be selected
using the following three properties:

 SelLength: Returns or sets the number of selected characters.

 SelStart: Returns or sets the starting point of the text selected. SelStart
indicates the position of the inserted point when no text is selected.

 SelText: Returns or sets the string that contains the currently selected
text. SelText will have a zero-length string if no text is selected.

Label Control

It is a graphical control which the user can use for displaying text that cannot be
edited. A Label control displays text that cannot be changed. Basically, Labels are
used for identifying controls (such as scrollbars and TextBoxes) that have no Caption
property of their own.

Some common properties of Label control are as follows:

Table 6.5 Common Properties of Label Control

Property

Caption The property used to display the text in the Label control.

Font The property used to specify the display font, style and size of the
caption of the Label.

(Name) The property used to name the label control. Label is represented in
coding by using this name.

Alignment The property used to specify the alignment of Label’s Caption. 0—
Left Justify, 1—Right justify and2—Centralized. By default, text is
left justified.

WordWrap The property used to set the word wrapping option for the caption
text. If we set this property to true then the text is wrapped and
expanded vertically.

Autosize This property causes the control to expand horizontally and adjust
to the size of its contents.

BorderStyle This property, if set to 1,allows the label to appear with a borderthat
gives it a similar look to thatof a text box.

CommandButton Control

The CommandButton control allows the user to click on it to perform specific
actions. When the user chooses the button, it carries out the appropriate action. It
also looks as if it is being pushed in and released. The Click event procedure is
invoked whenever the user clicks a button. You can put code in the Click event
procedure for performing any action.

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
108 Material

Some common properties ofCommandButton control are as follows:

Table 6.6 Common Properties of CommandButton Control

Property Description
BackColor This property specifies the background colour of the

CommandButton and selects a colour in the BackColor property.
Cancel This property determines whether the command gets a click event if

the user presses Esc.
Caption To display text on a CommandButton control and set its caption

property.
Default This property determines if the command button responds to an Enter

key press even if another control has the focus..
Enabled This property enables or disables the buttons set the Enabled property

to True or False.
Font This property opens a font dialog box in which you can set the font

name, style and size.
Height This property holds the height of the command button’s in twips.
MousePointer This property determines the shape of the mouse pointer.
Picture This property holds the name of an icon graphic image that appears

on the command button as long as the style property is set to 1—
Graphical.

Style This property determines whether the command button appears as a
standard windows command button (set to 0—Standard) or with a
colour and possible picture (set to 1—Graphical).

ToolTip Text This property holds the text that appears as a ToolTip at runtime.
Visible To make visible or invisible the buttons at run-time, set the Visible

property to True or False.

OptionButton Control

The OptionButton control provides a set of choices from which a user can select
only one button by:

 Clicking it at runtime

 Assigning the value property of the Option Button to True. The code to
assign it to True like Option1.Value = True

 Using the shortcut keys specified in the Caption of a Label.

When one button is selected, all the other buttons in the group are cleared.

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 109

Some common properties of OptionButton control are as follows:

Table 6.7 Common Properties of OptionButton Control

Property Description

Caption This property is used to display the text for the option button.

(Name) This property is used to name the option button that can be
represented in coding.

Alignment This property is used to set the alignment of the option button. You
can set either left or right justify.

Style This property determines whether the option button appears as a
standard windows command button (set to 0—Standard) or with a
colour and possible picture (set to 1—Graphical).

Value This property is used to set the state of option button. If set toTrue,
the option button appears selected.

CheckBox Control

A CheckBox control is similar to an option button. CheckBox controls are used
for offering a small set of choices from which one can choose one or more options.
The Value property of both the controls is tested to check the current state. Check
Boxes are valid as a single control and are not mutually exclusive.

Some common properties of the CheckBox control are as follows:

Table 6.8 Common Properties of the CheckBox Control

Property Description
Caption It is used to display text for the option button .
(Name) It is used to name the option button that can be represented in coding.
Alignment It is used to set the alignment of the option button. You can set either left

or right justify.
Enabled It specifies whether the option button or check box is enabled or disabled.
Value It specifies whether the option button or the check box has been checked

or not. The value is either True or False for the option button and value
for check boxes are as follows :

Value Description
0 Unchecked
1 Checked
2 Grayed

ListBox Control

A ListBox control displays a list of items from which one or more items can be
displayed. A user gets a list of choices from the list box. The choices are displayed
in a single column by default, though multiple columns can also be set up. Scroll
bars will automatically appear on the control if the number of items is more than
what can be displayed in the ListBox. The user can then scroll up and down, or
left to right through the list.

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
110 Material

Somecommon properties and methods of the ListBox control are as follows:

Table 6.9 Common Properties and Methods of the ListBox Control

Some Common Methods of ListBox Control

In order to properly work with the ListBox control within your application, you
should be able to do the following tasks:

 Add items to the list.

 Remove items from the list.

 Access individual items in the list.

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 111

Adding Items to a List

To add items to a ListBox, use the Additem method. It is possible to populate the
list at design time or runtime.

Design Time: To add items to a list at design time, click on the List property
in the property box and then add the items. Press Ctrl+Enter after adding each
item as shown in Figure 6.2.

Fig. 6.2 Design Time View of Adding Item in a ListBox

Runtime: The AddItem method is used to add items to a list at runtime.
The AddItem method uses the following syntax:

<ListBox>.AddItemitem item [, Index]

Where,

 TheListBox argument is a name of the ListBox, and

 Theitem argument is a string that represents the text to add to the list.

 The index argument specifies where the new item in the list is to be
inserted. The first position is represented by an index of 0.The item is inserted
at the end (or in the proper sorted order) if index is omitted.

While list items are generally added in the Form_Load() event
procedure, theAdditem method provides the ability of adding items to the list
dynamically.

The following is an example to add item to a list box named List1:
Private Sub Form_Load()

 List1. Additem ‘New Delhi’

 List1.Additem ‘Mumbai’

 List1.Additem. ‘Kolkotta’

 List1.Additem ‘Chennai’

End Sub

For adding an item to a list at a particular position, an index value for the
new item should be specified. The next line of code, for example, inserts
‘Chandigarh’ into the first position, adjusting the position of other items downward:

List1.Additem ‘Chandigarh’ , 0

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
112 Material

Removing Items from a List

The RemoveItem method is used to remove an item from a list. The syntax
for this is given as follows:

<Listbox>.RemoveItem <Index>

The<Listbox> and<Index> arguments are the same as for Additem.

For example, for removing the first entry in a list, add the following line of
code:

List1.Removeitem 0

The following code verifies that an item is selected in the list and then removes
the selected item from the list:

Fig. 6.3 Runtime Deletion of a Selected Item in a ListBox

To remove all entries in a list, use the Clear method.
List1.Clear

Sorting a List

You can specify the items to be added to a list alphabetically by setting theSorted
property to True and scraping the index. The sort is not case-sensitive; thus, the
words ‘Chandigarh’ and ‘chandigarh’ are treated as same.

Accessing List Items in the List

TheList property provides access to all items in the list. This property has an
array in which each item in the list is an element of the array and each item is
represented in a string form. To refer to an item in the list, use the following syntax:

<Listbox>.List(<index>)

The top item has an index of 0, the next has an index of 1, and so on. For
example, the following statement displays the third item (index = 2) in a list in a
text box.

txtCity.Text = List1.List(2)

To display only the selected item from the list in a text
box, the following statement is used:

txtCity.text = List1.List(List1.Listindex)

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 113

Returning the Number of Items with the ListCount Property

For returning the number of items in a list box, use theListCount property.
The following statement, for example, uses the ListCount property for determining
the number of entries in a list box:

Text1.Text = List1.ListCount

File System Controls

Three of the controls on the ToolBox let you access the computer’s file system.
They are DriveListBox, DirListBox and FileListBox controls (Refer Figure 1.7),
which are the basic blocks for building dialog boxes that display the host computer’s
file system. Using these controls, a user can traverse the host computer’s file system,
locate any folder or files on any hard disk, even on network drives. The files
controls are independent of each other, and each can exist on its own, but they are
rarely used separately.

Figure 6.4 shows that three files controls are used in the design of forms that
let the users explore the entire structure of their hard disks.

Fig. 6.4 Three Controls of File System

 DriveListBox: This displays the names of the drives within and
connected to the PC. The basic property of this control is the drive
property, which sets the drive to be initially selected in the control or
returns the user’s selection.

 DirListBox: This displays the folders of current Drive. The basic
property of this control is the Path property, which is the name of the
folder with subfolders displayed in the control.

 FileListBox: This displays the files of the current folder. The basic
property of this control is also called Path and it is the path name of the
folder whose files are displayed.

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
114 Material

The three File controls are not tied to one another. If you place all three of
them on a Form, you will see the names of all the folders under the current folder
and so on. Each time you select a folder in the DirlistBox by double-clicking its
name, its subfolders are displayed. Similarly, the FileListBox control will display
the names of all the files in the current folder. Selecting a drive in the DriveListBox
control, however, does not affect the contents of the DirListBox.

To connect to the File controls, you must assign the appropriate values to
the properties. To compel the DirListBox to display the folders of the selected
drive in the DriveListBox, you must make sure that each time you select another
drive, the Path property of the DirListBox control matches the Drive property of
the DriveListBox.

The following is the minimum code you must place in the change event of
the DriveListBox control:

Private Sub Drive1_Change()

Dir1.Path = Drive1.Drive

End Sub

Similarly, every time the current selection in the DirListBox control changes,
you must set the FileListBox control’s path property to point the new path of the
DirListBox control:

Private Sub Dir1_Change()

File1.Path = Dir1.Path

End Sub

This is all it takes to connect the three file controls.

Tab Order

TabIndex Property of Controls

Visual Basic makes use of the TabIndex property for determining the control that
will be next in focus when a tab key is pressed. VB looks at the value of the
TabIndex for the control that has focus, every time a tab key is pressed, and then
it scans through the controls looking for the next highest TabIndex number. VB
starts all over again with 0 when there are no more controls with higher TabIndex
value. It looks for the first control with TabIndex of 0 or higher that can accept
keyboard input.

VB, by default, assigns a tab order for controlling as we draw the controls
on the Form, except for Menu, Data, Timer, Line, Image and Shape controls,
which are not a part of tab order. Even though a TabIndex value is given, invisible
or disabled controls also cannot receive the focus at runtime. In the development
environment, setting the TabIndex property of controls is compulsory.

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 115

Visual Basic IDE Modes

A VB application works in either of the following three modes:

 Design Mode.
 Run Mode.
 Break/Suspended Mode.

While an application is being created or designed, it is in the design mode.
When the application is executing, it is said to be in the run mode and while an
application is in a state of suspension, it is said to be in the break mode.

Definition of Basic Terms

The following are the definitions of various VB terms which are used frequently.

Application

An application is an assortment of objects that work together for accomplishing
something useful. The application in VB is called Project. A project could be
calculation of mortgages, management of a video store, the payroll for 1000
employees or any required service.

Object

An object is a part of software with properties and functions that can be changed.
A window is an object with properties like color, size, position on the screen,
etc. The function of a window, also known as methods, can be manipulated to
move it around, change the size, open it and close it. There is no need for writing
the code for resizing a window. It can be done by clicking and dragging. The code
can be written by anybody and put together in a small package called window
object. The window object can be copied and pasted wherever it is needed by
changing its properties for color or size. Its built-in methods can be used for
opening and closing it or for resizing it whenever required. When an application is
created using objects and are combined for producing results, it means the user is
working in an object oriented environment.

Visual Basic Program Development Process

Generally, the following steps are required for building a VB application:

Step 1: Designing the Interface.
Step 2: Setting Properties of the Controls (Objects).
Step 3: Writing the Procedures of the Events.

Step 1: Designing the Interface

Visual Basic has its own IDE which can be used to design the Interface. The term
Interface refers to GUI objects. These objects that are put on a Form are called
controls. For getting a control, go to the Toolbox, then click on the control you

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
116 Material

need, return to the Form and click and drag the control to the size and position
you want. Position the controls as shown in the following screenshot:

Fig. 6.5 Visual Basic IDE

We can make the bunch of controls on the form more attractive by changing
the Properties of the controls in the Properties window. Each control has a
whole series of properties. But right now, we only need the following ones:

Alignment = How text aligns in the control.

BackColor = The color of the background.

Caption = The text that will appear in the control.

Font = The font type and size.

ForeColor = The color of the text (foreground).

Just as in all Windows applications, you can select multiple controls with
Ctrl+Click for changing a property for all of them at once. For example, if there
are all white backgrounds, select all controls, change ForeColor to white
and all of them will be modified. Change the form to look like the one shown in the
Figure 6.6. Note that there is no need to change the captions for Label4, Label5
and Label6 and the color of the buttons cannot be changed. The color of the
buttons is what was earlier called ‘IBM grey’. Remember to save your project as
soon as you can.

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 117

Step 2: Setting Properties of the Controls (Objects)

At this point, if you Run the application, your Form will appear just the way it was
created. However, absolutely nothing happens if you click on any of the controls.
Some events happen, i.e., the form opens, a button is clicked, etc. But, i.e., nothing
tells the form what should be done when it sees an event. This is the reason that we
have to write code, which is also known as script. Figure 6.6 illustrates the Design
Mode.

Fig. 6.6 Design Mode

Figure 6.7 illustrates the final display of the designed form.

Fig. 6.7 Final Display

For switching between the Code window and the Form window, use the
buttons just over the Project Explorer window (refer Figure 6.8 (a)).

Once you are in the Code window, you can see all the codes for the project or
the code for one event at a time. Use the buttons in the lower left hand corner (refer
Figure 6.8(b)).

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
118 Material

Fig. 6.8(a) Project Explorer Window Fig. 6.8(b) Code Editor Window

For selecting the object and the event you want to code, use the two List
boxes given at the top of the Code window where the left button is for the object
and the right button is for the event. Start with General ... Declarations and then
Form ... Load, etc.

Step 3: Write the Procedures of the Events

The user can write down the procedures of the event as shown in the following
Figures 6.9 and 6.10.

Fig. 6.9 Showing the Code

Fig. 6.10 Showing the Code of Form_Load Event

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 119

Now we can Run it and find something happening. When the Form loads,
it will initialize the fields that were specified in the code.

ComboBox Control

A ComboBox control combines the features of a TextBox and a ListBox. This
control allows the user to select an item either by typing text into the ComboBox
or by selecting it from the list. The ComboBox control is similar to the ListBox
control in the sense that it contains multiple item of which the user may select one,
but it takes less space on the screen. The ComboBox control is practically an
expandable ListBox control, which can grow when the user wants to make a
selection and retracts after the selection is made. The real difference, however,
between the ComboBox and ListBox controls is that the ComboBox control allows
the user to specify items that do not exist in the list. Some common properties and
methods of ComboBox control are shown in Table 6.10.

Table 6.10 Common Properties and Methods of ComboBox Control

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
120 Material

Note: As we have already discussed that the ComboBox control is similar
to the ListBox control to some extent. From Table 6.10, you can observe that the
property methods and events of both the controls (ListBox, ComboBox) are almost
common. As adding, removing and accessing items in a ComboBox control is
similar to the ListBox control. There is no need to explain each method again for
the ComboBox control.

There are three ComboBox styles (refer Figure 6.11). Each style can be set
at either design time or runtime and uses values or equivalent VB constant to set
the style of the ComboBox.

Fig. 6.11 Three Different Styles of ComboBox Control

The simple ComboBox displays an edit area with an attached ListBox that
is always visible immediately below the edit area. A simple ComboBox displays
the contents of its list all the time. The user can select an item from the list or type
an item in the edit box portion of the ComboBox. A scroll bar is displayed beside
the list if there are too many items to be displayed in the ListBox area.

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 121

The drop-down ComboBox first appears having only an edit area with a
down arrow button at the right. The list portion stays hidden until the user
dropdowns the list portion by clicking the down arrow button. The user can either
select a value from the list or type a value in the edit area.

The drop-down list ComboBox changes the ComboBox into a dropdown
ComboBox. At runtime, the control looks similar to the drop-down ComboBox .
The user could click the down arrow to view the list. The difference between the
drop-down combo and drop-down list combo is that the edit area in the drop-
down list combo is disabled. The user can only select an item and cannot type
anything in the edit area. Anyway, this area displays the selected item(s).

Check Your Progress

1. What is TextBox?

2. For selecting the text which properties are used?

3. Explain about the Label control.

4. Which property is used to display the text in the Label control?

5. What do you understand by CommandButton control?

6. Which control is used for selecting one of several options?

7. For indicating whether a particular condition is on or off which control is
used?

8. Define about the CheckBox control.

9. State about the different tasks of List Box control.

6.3 CONTROL ARAAY

A control array is a collection of more than one VB control that shares the same
name, which is the name of the array. All the controls in an array must be same,
such as an array of Labels. In a control array, each control has a unique index
number and you can access the control by using these unique numbers only. By
increasing the index number, you can access all the subsequent controls in an
array.

You can create a control array in the following two ways:

 Set the Index property of a control during the design time. For example,
if you set the index of a Label to 0, then it will be the first Label in the
control array of labels.

 Create a control component on the design window. Now, click the control
component and press Ctrl+C to copy that control. After copying the
component, press Ctrl+V to paste that copied control. When you paste
the component, the VB compiler asks to create a control array.

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
122 Material

Figure 6.12 shows Microsoft Visual Basic warning dialog box.

Fig. 6.12 Displaying Warning for Creating a Control Array

Now, click Yes to create a control array, else click No.

You can use the following index to access each element of the control array:

<Control array name> (array index)

You can also change the properties of the control array elements by using
the following syntax:

<Control array name> (array index). <Property name> =

 <property value>

Check Your Progress

10. Define the term Control array.

11. State about the Ways to create Control array.

6.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A TextBox control is an edit field or edit control displaying information
entered as design time by the user.

2. The text can be selected using the following three properties:

 SelLength: Returns or sets the number of selected characters.

 SelStart: Returns or sets the starting point of the text selected. SelStart
indicates the position of the inserted point when no text is selected.

 SelText: Returns or sets the string that contains the currently selected
text. SelText will have a zero-length string if no text is selected.

3. Label is a graphical control which the user can use for displaying text that
cannot be edited. A Label control displays text that cannot be changed.
Basically, Labels are used for identifying controls (such as scrollbars and
TextBox) that have no Caption property of their own.

4. Caption property is used to display the text in the Label control.

5. The CommandButton control allows the user to click on it to perform specific
actions. When the user chooses the button, it carries out the appropriate
action. It also looks as if it is being pushed in and released. The Click event

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 123

procedure is invoked whenever the user clicks a button. You can put code
in the Click event procedure for performing any action.

6. OptionButton control is used for selecting one of several options.

7. For indicating whether a particular condition is on or off CheckBox control
is used.

8. A CheckBox control is similar to an option button. CheckBox controls are
used for offering a small set of choices from which one can choose one or
more options. The Value property of both the controls is tested to check
the current.

9. In order to properly work with the ListBox control within your application,
you should be able to do the following tasks:

Add items to the list.

Remove items from the list.

Access individual items in the list.

10. A control array is a collection of more than one VB control that shares the
same name, which is the name of the array.

11. You can create a control array in the following two ways:

 Set the Index property of a control during the design time. For example,
if you set the index of a Label to 0, then it will be the first Label in the
control array of labels.

 Create a control component on the design window. Now, click the control
component and press Ctrl+C to copy that control. After copying the
component, press Ctrl+V to paste that copied control. When you paste
the component, the VB compiler asks to create a control array.

6.5 SUMMARY

 The working environment in VB incorporates several different functions
like editing, designing, compiling and debugging, within a common
environment.

 Title Bar is the topmost bar displaying the title of the project. The window
titled Project 1 is the name of project containing the project files.

 Form is the main feature of the VB application. It is the ‘window’ or ‘screen’
that users interact with. It can be considered as a ‘canvas’ on which the
user places the objects that forms an application.

 Toolbox Window has a set of controls used for customizing forms.
 Properties Window helps in changing the property settings or characteristics

of the form itself and also the elements of visual interface on the form.
 Project Explorer or Project Window shows the list of forms and modules

in a project. A VB Project Explorer consists of a number of forms, modules
and controls that make up an application.

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
124 Material

 Form Layout Window shows how big a form is in relation to the screen. It
also displays the position of the window where it will be displayed when the
project is run.

 Code Editor Window is the place for writing VB code for your application.
By code we mean language statements, declarations and constants. For
entering application code, the code editor window is used which serves as
an editor.

 A control is an object that can be drawn on a Form object for enabling or
enhancing user interaction with an application.

 A container control can hold other controls within it, for example, a Frame
(there can be multiple controls inside a frame) or a Picture Box (it holds a
picture) or simply your Form (you can put so many controls on it). Controls
inside containers are known as child controls.

 In VB, the Form acts as the container for all the controls that form the
interface. The Form is the top-level object in a VB application, and every
application starts with the Form.

 The main characteristic of a Form is the title bar on which the Form’s caption
is displayed.

 Restores a maximized Form to its size before it was maximized; available
only if the Form has been maximized.

 A Frame control is used to group various controls. A Frame control is a
container control, i.e., it contains other controls in it; it does not carry out
any job/action by itself, i.e., it does not respond to any event by itself.

 A TextBox control is an edit field or edit control, displaying information
entered at design time by the user, or assigned to the control using code at
runtime.

 It is a graphical control which the user can use for displaying text that cannot
be edited. A Label control displays text that cannot be changed.

 The CommandButton control allows the user to click on it to perform specific
actions.

 CheckBox controls are used for offering a small set of choices from which
one can choose one or more options.

 A ListBox control displays a list of items from which one or more items can
be displayed. A user gets a list of choices from the list box.

 The choices are displayed in a single column by default, though multiple
columns can also be set up.

 Scroll bars will automatically appear on the control if the number of items is
more than what can be displayed in the ListBox.

 To add items to a ListBox, use the Additem method. It is possible to populate
the list at design time or runtime.

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 125

 To add items to a list at design time, click on the List property in the property
box and then add the items.

 The AddItem method is used to add items to a list at runtime.
 The ListBox argument is a name of the ListBox, and the item argument is a

string that represents the text to add to the list.
 The index argument specifies where the new item in the list is to be inserted.

The first position is represented by an index of 0.The item is inserted at the
end (or in the proper sorted order) if index is omitted.

 While list items are generally added in the Form_Load () event procedure,
theAdditemmethod provides the ability of adding items to the list dynamically.

 For adding an item to a list at a particular position, an index value for the
new item should be specified.

 The RemoveItem method is used to remove an item from a list.
 You can specify the items to be added to a list alphabetically by setting the

Sorted property to true and scraping the index.
 The sort is not case-sensitive; thus, the words ‘Chandigarh’ and ‘chandigarh’

are treated as same.
 The List property provides access to all items in the list. This property has

an array in which each item in the list is an element of the array and each
item is represented in a string form.

 For returning the number of items in a list box, use the ListCount property.
 Three of the controls on the toolbox let you access the computer’s file

system.
 They are DriveListBox, DirListBox and FileListBox controls, which are the

basic blocks for building dialog boxes that display the host computer’s file
system.

 Using these controls, a user can traverse the host computer’s file system,
locate any folder or files on any hard disk, even on network drives. The files
controls are independent of each other, and each can exist on its own, but
they are rarely used separately.

 This displays the names of the drives within and connected to the PC. The
basic property of this control is the drive property, which sets the drive to
be initially selected in the control or returns the user’s selection.

 DirListBox displays the folders of current Drive. The basic property of this
control is the Path property, which is the name of the folder with subfolders
displayed in the control.

 FileListBox displays the files of the current folder. The basic property of
this control is also called Path and it is the path name of the folder whose
files are displayed.

 The three File controls are not tied to one another. If you place all three of
them on a Form, you will see the names of all the folders under the current
folder and so on.

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
126 Material

 Each time you select a folder in the DirlistBox by double-clicking its name,
its subfolders are displayed. Similarly, the FileListBox control will display
the names of all the files in the current folder. Selecting a drive in the
DriveListBox control, however, does not affect the contents of the
DirListBox.

 To connect to the File controls, you must assign the appropriate values to
the properties.

 To compel the DirListBox to display the folders of the selected drive in the
DriveListBox, you must make sure that each time you select another drive,
the Path property of the DirListBox control matches the Drive property of
the DriveListBox.

 Visual Basic makes use of the TabIndex property for determining the control
that will be next in focus when a tab key is pressed.

 VB looks at the value of the TabIndex for the control that has focus, every
time a tab key is pressed, and then it scans through the controls looking for
the next highest TabIndex number.

 VB starts all over again with 0 when there are no more controls with higher
TabIndex value. It looks for the first control with TabIndex of 0 or higher
that can accept keyboard input.

 VB, by default, assigns a tab order for controlling as we draw the controls
on the Form, except for Menu, Data, Timer, Line, Image and Shape controls,
which are not a part of tab order. Even though a TabIndex value is given,
invisible or disabled controls also cannot receive the focus at runtime.

 In the development environment, setting the TabIndex property of controls
is compulsory.

6.6 KEY WORDS

 Project:A collection of several different types of files that make up a program.

 Form: The main feature of the VB application; it is the ‘window’ or ‘screen’
that users interact with.

 Methods: The public functions or procedures that are defined in a class.

 Events: Generate and invoke events for an object in VB.

 DriveListBox: This displays the names of the drives within and connected
to the PC. The basic property of this control is the drive property, which
sets the drive to be initially selected in the control or returns the user’s
selection.

 DirListBox: This displays the folders of current Drive. The basic property
of this control is the Path property, which is the name of the folder with
subfolders displayed in the control.

Using Intrinsic Visual
Basic Controls with

Methods and Properties

NOTES

Self-Instructional
Material 127

 FileListBox: This displays the files of the current folder. The basic property
of this control is also called Path and it is the path name of the folder whose
files are displayed.

 Control array: A collection of more than one VB control that shares the
same name which is the name of the array.

6.7 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is the difference between Enabled property and visible property of a
TextBox control?

2. Visual Basic a tool allows you to develop which type of applications.

3. How the ComboBox control is similar to the ListBox control?

4. Name at least two ways in which the user can trigger a command button.

5. Which property setting of TextBox would you use for entering a secret
message?

6. Which control is used to provide an identifiable grouping for other controls?

7. What is the property that indicates whether or not a ListBox item is selected?

8. Which is a group of controls that share the same name and type.

Long-Answer Questions

1. Discuss ComboBox controls and its various methods and properties.

2. Explain control arrays. How array elements can be processed in VB
program?

3. List out controls which does not have events.

4. Elaborate briefly on the ListBox Control.Expalin all the methods of ListBox
Control in detail.

5. Briefly discuss about the File system control, and its type.

6. Design an application to display traffic lights. The red and green lights should
display for 12 seconds and the yellow light should be on for 5 seconds.

7. Indian Railways has introduced some more trains. Write an event procedure
in VB to add the names of the new trains to the list as well as delete the
trains that will be no longer running.

8. Design an application in VB to allow the user to set an alarm at scheduled
time. Use the Beep statement to ring the alarm.

9. Design an application that accepts an item name from the user and adds it
to a list box. Its screenshot being shown below:

Using Intrinsic Visual
Basic Controls with
Methods and Properties

NOTES

Self-Instructional
128 Material

10. Design a VB application with the following interface:

6.8 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Creating Procedures
and Functions

NOTES

Self-Instructional
Material 129

BLOCK III
VISUAL BASIC PROCEDURES,

FUNCTIONS AND ARRAYS

UNIT 7 CREATING PROCEDURES
AND FUNCTIONS

7.0 Introduction
7.1 Objectives
7.2 Creating Procedures and Functions
7.3 Answers to Check Your Progress Questions
7.4 Summary
7.5 Key Words
7.6 Self-Assessment Questions and Exercises
7.7 Further Readings

7.0 INTRODUCTION

A function procedure is a series of Visual Basic (VB) statements enclosed by
the function andEnd Function statements. The function procedure performs a task
and then returns control to the calling code.You can define a Function procedure
in a module, class, or structure. It is Public by default, which means you can call it
from anywhere in your application that has access to the module, class, or structure
in which you defined it. A Function procedure can take arguments, such as
constants, variables, or expressions, which are passed to it by the calling code.

When function procedure it returns control, it also returns a value to the
calling code. Each time the procedure is called, its statements run, starting with the
first executable statement after the Function statement and ending with the first End
Function, Exit Function, or Return statement encountered.

Numeric functions are used to calculate numerical expressions.

String functions are used to manipulate one or more string arguments and
after manipulation it returns a string value.

Date and Time functions are used to manipulate the date and time values.

In computer science, recursion is a method of solving a problem where the
solution depends on solutions to smaller instances of the same problem.

In this unit, you will study about the procedures, functions, string function,
numeric function, date and time function and recursive function.

Creating Procedures
and Functions

NOTES

Self-Instructional
130 Material

7.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the significance of functions in VB

 Elaborate on the library function

 Discuss about the Numeric function, String function, Date and Time function

 Able to handle common events of Visual Basic controls

 Differentiate between procedure and function

 Explain about the recursive function

7.2 CREATING PROCEDURES AND FUNCTIONS

Library functions are the built-in functions, which are defined in the VB (Visual
Basic) library. Each library function performs a specific operation. You can use
these functions directly, without implementing in a programming to perform various
functions, such as manipulating strings and numbers. Depending on the functioning,
the library functions can be categorized into the following categories:

 Numeric Functions.

 String Functions.

 Date and Time Functions.

Numeric Functions

Numeric functions are used to calculate numerical expressions. Table 7.1 lists the
commonly used built-in numeric functions.

Table 7.1 Numeric Library Functions

Numeric Functions Description

Abs (argument) Returns the absolute value of the argument. The
absolute value is the positive equivalent of the
argument. For example, the absolute value for both
Abs (78) and Abs (–78) will be 78.

Sqr (argument) Returns the square root of the argument. For
example, the value of the sqr (6) will be 36.

Cos (argument) Returns the cosine value of the argument and this
cosine value is expressed in radians.

For example, the steps for implementing theSqr numerical function in VB
are as follows:

1. Open the Code window.

2. Click the down arrow button next to theObject drop-down list box
and select the Form control.

Creating Procedures
and Functions

NOTES

Self-Instructional
Material 131

3. Click the down arrow button next to the Procedure drop-down
list box and select theLoad event.

4. Enter the following lines of code in the Code window.
Private Sub Form_Load()

Dim x As Integer

x = 34

MsgBox (Sqr(x))’ displays square root of the value 34

End Sub

Figure 7.1 shows the Code window for theSqr numerical function.

Fig. 7.1 Displaying the Code for Implementing the Sqr Numerical Function

5. Press F5 to compile the above code. Figure 7.2 shows the output after
compiling theSqr numerical function.

Fig. 7.2 Output for the Sqr Numerical Function

String Functions

String functions are used to manipulate one or more string arguments and after
manipulation it returns a string value. Table 7.2 lists the commonly used built-in
string functions.

Table 7.2 String Library Functions

String Functions Description

UCase(argument) Returns all characters of the argument in upper
case. In the UCase(argument) function, the
argument represents a string value.

LCase(argument) Returns all characters of the argument in lower
case. In the LCase(argument) function, the
argument represents a string value.

Creating Procedures
and Functions

NOTES

Self-Instructional
132 Material

Left(argument, int) Returns a specific number of characters from
the leftmost portion of the string. In the Left
(argument, no of characters), argument
represents a string and the int parameter
specifies the number of characters you want
to extract from the string. Consider the
following listing:

Dim value As String

value = “abcdefgh”

MsgBox (Left(Pname, 2))

The above listing will print the first two
characters from the leftmost portion of the
string value. As a result, the output will be ab.

Right(argument, int) Returns a specific number of characters from
the rightmost portion of the string. In theRight
(argument, no of characters), argument
represents a string and the int parameter
specifies the number of characters you want
to extract from the string. Consider the
following listing:

Dim value As String

value = “abcdefgh”

MsgBox (Right(Pname, 2))

The above listing will print the first two
characters from the rightmost portion of the
string value. As a result, the output will be gh.

Len (argument) Returns the total number of characters in a
string. In Len (argument), argument
represents the string. Consider the following
listing:

Dim value As String

value = “abcdefgh”

MsgBox (Len(value))

The above listing will print 8, which is the
length of the string.

StrReverse (argument) Returns the characters of a string in reverse
order. In StrReverse (argument), argument
represents the string. Consider the following
listing:

Dim value As String

value = “abcdefgh”

MsgBox (StrReverse (value))

Creating Procedures
and Functions

NOTES

Self-Instructional
Material 133

The above listing will print all the characters
of the string in reverse order. As a result, the
output will be hgfedcba.

InStr (argument, search argument) Returns the location of a specific alphabet or
word in a string. In InStr (argument, search
argument), argument specifies the string,
search argument specifies the alphabet or word
that you want to search and startpos specifies
the starting position for the search. Consider
the follwing listing:

MsgBox (InStr(“I am a good boy”,
“m”))

For the above listing, the m alphabet is at
position 4 in the string “I am a good boy”.
Therefore, the output of the above listing will
be 4.

For example, the following steps show how to use theLen function in VB:

1. Open the Code window.

2. Click the down arrow button next to theObject drop-down list box
and select the Form control.

3. Click the down arrow button next to the Procedure drop-down
list box and select theLoad event.

4. Enter the following lines of code in the Code window:
Private Sub Form_Load()

Dim yourname As String

yourname = “John Kumar”

MsgBox Len(yourname)

End Sub

Figure 7.3 shows the Code window for theLen function.

Fig. 7.3 Displaying the Code for Implementing the Len Function

5. Press F5 to compile the above code. Figure 7.4 shows the output of the
Len function after compilation.

Creating Procedures
and Functions

NOTES

Self-Instructional
134 Material

Fig. 7.4 Output for Length of the yourname String

Consider another example that uses theUcase function. The following
steps show how to use theUCase function in VB:

1. Open the Code window.

2. Click the down arrow button next to theObject drop-down list box
and select the Form control.

3. Click the down arrow button next to the Procedure drop-down
list box and select theLoad event.

4. Enter the following lines of code in the Code window:
Private Sub Form_Load()

Dim value As String

value = “abcdefgh”

MsgBox UCase(value)

End sub

Figure 7.5 shows the Code window for theUCase function.

Fig. 7.5 Displaying the Code for Implementing the UCase Function

5. Press F5 to compile the above code. Figure 7.6 shows the output of the
UCase function after compilation.

Creating Procedures
and Functions

NOTES

Self-Instructional
Material 135

Fig. 7.6 Output for the UCase Functions

Date and Time Functions

Date and Time functions are used to manipulate the date and time values.
Table 7.3 lists the commonly used built-inDate andTime functions.

Table 7.3 String library functions

Date and Time Functions Description

Date Returns the current date.

Time Returns the current time.

TimeSerial(hour, min, sec) Returns the current date and time in the internal date
format.

Now Returns the current date and time.

For example, the steps for implementing theNow function in VB are:

1. Open the Code window.

2. Click the down arrow button next to the Object drop-down list
box and select the Form control.

3. Click the down arrow button next to theProcedure drop-down
list box and select theLoad event.

4. Enter the following lines of code in the Code window.
Private Sub Form_Load()

MsgBox (Now)

End Sub

Figure 7.7 shows the Code window for theNow function.

Fig. 7.7 Displaying the Code for Implementing the Function

Creating Procedures
and Functions

NOTES

Self-Instructional
136 Material

5. Press F5 to compile the above code. Figure 7.8 shows the output after
compiling theNow function.

Fig. 7.8 Output for the Now Function

Common Methods of Visual Basic Controls

Methods are blocks of code that are designed into a control and let the control
know how to do things like move to another location on a Form. Just like properties,
all controls do not have the same methods, although there are some common
methods, as shown in Table 7.4.

Table 7.4 Common Methods of VB Control

Method Description
Move Changesthe position of an object in response to a code request.

Drag Handles the execution of a drag and- drop operation by the user.
SetFocus Gives focus to thespecified object in the method call.

ZOrder Determines the order in which multiple objects appear onscreen.

Common Events of Visual Basic Controls

Events are what occur in and around a program. When, for example, a user clicks
a button, several events happen. The mouse button is pressed, the
CommandButton in the program is clicked and then the mouse button is
released. These three things correspond to theMouseDown event, theClick
event and theMouseUp event. During this process, theGotFocus event for
the CommandButton and theLostFocus event for the object previously
held also happen.

Again, all controls do not have the same events, but there are some events
that are shared by several controls. These events are a result of some particular
user action like clicking aTextBox, moving the mouse or pressing a key on the
keyboard. These types of events are initiated by the user. Events common to most
VB controls are described in Table 7.5.

Creating Procedures
and Functions

NOTES

Self-Instructional
Material 137

Table 7.5 Common Events of VB Controls

Event Occurs When ...
Change The user modifiesthe text in a text box or acombo box.
Click The user clicks themain mouse button on an object.
DblClick The user double-clicks the main mouse button on an object.
DragDrop The user drags an object toa differentlocation.
DragOver The user drags an object over another control.
GotFocus An object receives focus.
KeyDown The user presses a key on the keyboard while an object has focus.

It reports the exact physical state of the keyboard itself.
KeyPress The user presses and releases akey on the keyboard while an

object has focus. It simply returns the character that the key
represents.

KeyUp The user releases akey on the keyboard while an object has
focus. It reports the exact physical state of the keyboard itself

LostFocus An object loses focus.
MouseDown The user presses a mouse button while the mouse pointer is over

an object.
MouseMove The user moves the mouse pointer over an object.
MouseUp The user releases a mouse button while the mouse pointer is over

an object.

Distinction Between Procedures and Functions

Procedures and functions are used to create modular programs. Visual Basic
statements are grouped in a block enclosed bySub,Function and matching
End statements. The difference between the procedures and functions is that
functions return values whereas procedures do not return values.

A procedure is a block of Visual Basic statements insideSub,End Sub
statements. Procedures do not return values.

Sub Main()

SimpleProcedure()

End Sub

Sub SimpleProcedure()

Console.WriteLine(“Simple procedure”)

End Sub

This example shows basic usage of procedures. In the above programs, we
have two procedures. The Main() procedure and the user defined
SimpleProcedure().The Main() procedure is the entry point of a
Visual Basic program.

SimpleProcedure()

Each procedure has a name. Inside the Main() procedure, we call our
user defined SimpleProcedure() procedure.

Sub SimpleProcedure()

Console.WriteLine(“Simple procedure”)

End Sub

Creating Procedures
and Functions

NOTES

Self-Instructional
138 Material

Procedures are defined outside theMain() procedure. Procedures name
follows the Sub statement. When we call a procedure inside the Visual Basic
program, the control is given to that procedure. Statements inside the block of the
procedure are executed.

Procedures can take optional parameters.
Sub Main()

Dim x As Integer = 55

Dim y As Integer = 32

Addition(x, y)

End Sub

Sub Addition(ByVal k As Integer, ByVal l As Integer)

Console.WriteLine(k+l)

End Sub

In the above example, we pass some values to the Addition()
procedure.

Addition(x, y)

Here we call the Addition() procedure and pass two parameters to
it. These parameters are two integer values.

Sub Addition(ByVal k As Integer, ByVal l As Integer)

Console.WriteLine(k+l)

End Sub

We define a procedure signature. A procedure signature is a way of
describing the parameters and parameter types with which a legal call to the function
can be made. It contains the name of the procedure, its parameters and their type
and in case of functions also the return value. The ByVal keyword specifies
how we pass the values to the procedure. In our case, the procedure obtains two
numerical values, 55 and 32. These numbers are added and the result is printed to
the console.

A function is a block of Visual Basic statements insideFunction, End
Function statements. Functions return values.

There are two basic types of functions. Built-in functions and user defined
ones. The built-in functions are part of the Visual Basic language. There are various
mathematical, string or conversion functions.

Sub Main()

Console.WriteLine(Math.Abs(-23))

Console.WriteLine(Math.Round(34.56))

Console.WriteLine(“ZetCode has {0} characters”, _
(“ZetCode”))

 End Sub

Creating Procedures
and Functions

NOTES

Self-Instructional
Material 139

In the preceding example, we use two math functions and one string function.
Built-in functions help programmers do some common tasks.

In the following example, we have a user defined function.
Dim x As Integer = 55

Dim y As Integer = 32

Dim result As Integer

Sub Main()

result = Addition(x, y)

Console.WriteLine(Addition(x, y))

End Sub

Function Addition(ByVal k As Integer, _

ByVal l As Integer) As Integer

Return k+l

 End Function

Two values are passed to the function. We add these two values and return
the result to theMain() function.

result = Addition(x, y)

Addition function is called. The function returns a result and this result are
assigned to theresult variable.

Function Addition (ByVal k As Integer,ByVal l As Integer)
As

Integer

Return k+l

End Function

Recursive Function

Recursion occurs when a method calls itself. Recursive functions need special
stop conditions. Otherwise they will infinitely continue calling themselves. In general,
this is not the most effective way to write Visual Basic code.

The following procedure uses recursion to calculate the factorial of its original
argument.

Function Factorial (n as Integer) As Integer

 If n <= 1 Then

 Return 1

 End If

 Return Factorial (n - 1) * n

End Function

Creating Procedures
and Functions

NOTES

Self-Instructional
140 Material

In the recursive function, every time that a recursive call is made, the program
branches to the new function call. Since the program was in the middle of executing
another call to the same function, it needs to store the necessary information to
allow it to return to the point where it branched. This information is stored in a
data structure called a stack and is placed on the top of the stack. When the
program has finished executing the new function, it returns to the stack, finds the
values it was working with before and completes the unfinished function. In this
function, there are lots of branches to place in the stack before returning and this
slows the program down more than you might think.

The following program code contains VB implementations of the two
functions described above. It uses the Stopwatch class to time the execution of
each algorithm.

Sub Main()

 Dim numToFind As Integer

 Console.Write(“Enter the term you want to find “)

 numToFind = Console.ReadLine()

 Dim stopW As Stopwatch = New Stopwatch()

 Dim term As Long

 stopW.Reset()

 stopW.Start()

 term = IterativeFibonacci(numToFind)

 stopW.Stop()

 Console.WriteLine(“Term no {0} = {1} Iterative: {2}
Milliseconds”, numToFind, term, stopW.ElapsedMilliseconds)

 stopW.Reset()

 stopW.Start()

 term = RecursiveFibonacci(numToFind)

 stopW.Stop()

 Console.WriteLine(“Term no {0} = {1} Recursive: {2}
Milliseconds”, numToFind, term, stopW.ElapsedMilliseconds)

 Console.ReadLine()

End Sub

Function RecursiveFibonacci(ByVal a As Integer) As Long

 If a = 0 Then Return 0

 If a = 1 Then Return 1

 Return RecursiveFibonacci(a - 1) + RecursiveFibonacci(a
- 2)

End Function

Function IterativeFibonacci(ByVal a As Integer) As Long

 If a = 0 Then Return 0

Creating Procedures
and Functions

NOTES

Self-Instructional
Material 141

 If a = 1 Then Return 1

 Dim fibNums(a + 1) As Long

 fibNums(0) = 0

 fibNums(1) = 1

 For count = 2 To a

 fibNums(count) = fibNums(count - 1) + fibNums(count
- 2)

 Next

 Return fibNums(a)

End Function

Considerations with Recursive Procedures

Limiting Conditions. You must design a recursive procedure to test for at least
one condition that can terminate the recursion, and you must also handle the case
where no such condition is satisfied within a reasonable number of recursive calls.
Without at least one condition that can be met without fail, your procedure runs a
high risk of executing in an infinite loop.

Memory Usage. Your application has a limited amount of space for local variables.
Each time a procedure calls itself, it uses more of that space for additional copies
of its local variables. If this process continues indefinitely, it eventually causes
a StackOverflowException error.

Efficiency. You can almost always substitute a loop for recursion. A loop does
not have the overhead of passing arguments, initializing additional storage, and
returning values. Your performance can be much better without recursive calls.

Mutual Recursion. You might observe very poor performance, or even an infinite
loop, if two procedures call each other. Such a design presents the same problems
as a single recursive procedure, but can be harder to detect and debug.

Calling with Parentheses. When a Function procedure calls itself recursively,
you must follow the procedure name with parentheses, even if there is no argument
list. Otherwise, the function name is taken as representing the return value of the
function.

Testing. If you write a recursive procedure, you should test it very carefully to
make sure it always meets some limiting condition. You should also ensure that
you cannot run out of memory due to having too many recursive calls.

Creating Procedures
and Functions

NOTES

Self-Instructional
142 Material

Check Your Progress

1. Explain the term library functions.

2. Why we use numeric functions in Visual Basic?

3. What is the use of string functions?

4. Explain about the Date and time functions.

5. Give the definition of method in Visual Basic.

6. What is the use of KeyPress event of Visual Basic Control?

7. Differentiate between procedures and functions.

8. Define the term procedure signature.

9. Elaborate on the term recursive function.

10. What is mutual recursive?

7.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Library functions are the built-in functions, which are defined in the VB
(Visual Basic) library. Each library function performs a specific operation.
You can use these functions directly, without implementing in a programming
to perform various functions, such as manipulating strings and numbers.

2. Numeric functions are used to calculate numerical expressions.

3. String functions are used to manipulate one or more string arguments and
after manipulation it returns a string value.

4. Date and Time functions are used to manipulate the date and time values.

5. Methods are blocks of code that are designed into a control and let the
control know how to do things like move to another location on a Form.
Just like properties, all controls do not have the same methods, although
there are some common methods.

6. The user presses and releases akey on the keyboard while an object has
focus. It simply returns the character that the key represents.

7. Procedures and functions are used to create modular programs. Visual Basic
statements are grouped in a block enclosed by Sub, Function and matching
End statements. The difference between the procedures and functions is
that functions return values whereas procedures do not return values.

8. We define a procedure signature. A procedure signature is a way of
describing the parameters and parameter types with which a legal call to
the function can be made. It contains the name of the procedure, its
parameters and their type and in case of functions also the return value.

Creating Procedures
and Functions

NOTES

Self-Instructional
Material 143

9. Recursion occurs when a method calls itself. Recursive functions need special
stop conditions. Otherwise they will infinitely continue calling themselves.

10. In computer science, mutual recursion is a form of recursion where two
mathematical or computational objects, such as functions or data types, are
defined in terms of each other.

7.4 SUMMARY

 Library functions are the built-in functions, which are defined in the VB
library.

 Library functions can be used directly, without implementing in a
programming to perform various functions, such as manipulating strings and
numbers.

 Numeric functions are used to calculate numerical expressions.

 String functions are used to manipulate one or more string arguments and
after manipulation it returns a string value.

 Date and Time functions are used to manipulate the date and time values.

 Methods are blocks of code that are designed into a control and let the
control know how to do things like move to another location on a Form.

 Just like properties, all controls do not have the same methods, although
there are some common methods.

 Events are what occur in and around a program. When, for example, a user
clicks a button, several events happen.

 The mouse button is pressed, the CommandButton in the program is
clicked and then the mouse button is released. These three things correspond
to the MouseDown event, the Click event and the MouseUp event.

 During this process, the GotFocus event for the CommandButton
and theLostFocus event for the object previously held also happen.

 These events are a result of some particular user action like clicking a
TextBox, moving the mouse or pressing a key on the keyboard.

 Procedures and functions are used to create modular programs.

 Visual Basic statements are grouped in a block enclosed by Sub,
Function and matching End statements.

 The difference between the procedures and functions is that functions return
values whereas procedures do not return values.

 A procedure is a block of Visual Basic statements inside Sub, End Sub
statements.

 Procedures are defined outside the Main () procedure. Procedures
name follows theSub statement.

Creating Procedures
and Functions

NOTES

Self-Instructional
144 Material

 When we call a procedure inside the Visual Basic program, the control is
given to that procedure. Statements inside the block of the procedure are
executed.

 We define a procedure signature. A procedure signature is a way of
describing the parameters and parameter types with which a legal call to
the function can be made.

 Procedure signature contains the name of the procedure, its parameters
and their type and in case of functions also the return value. The ByVal
keyword specifies how we pass the values to the procedure. A function is a
block of Visual Basic statements insideFunction, End Function
statements. Functions return values.

 There are two basic types of functions. Built-in functions and user defined
ones. The built-in functions are part of the Visual Basic language. There are
various mathematical, string or conversion functions.

 Recursion occurs when a method calls itself. Recursive functions need special
stop conditions. Otherwise they will infinitely continue calling themselves.

 In the recursive function, every time that a recursive call is made, the program
branches to the new function call.

 Since the program was in the middle of executing another call to the same
function, it needs to store the necessary information to allow it to return to
the point where it branched.

 This information is stored in a data structure called a stack and is placed
on the top of the stack.

 You must design a recursive procedure to test for at least one condition that
can terminate the recursion, and you must also handle the case where no
such condition is satisfied within a reasonable number of recursive calls.

 Memory usage application has a limited amount of space for local variables.

 Each time a procedure calls itself, it uses more of that space for additional
copies of its local variables. If this process continues indefinitely, it eventually
causes a StackOverflowException error.

 Efficiency can almost always substitute a loop for recursion. A loop does
not have the overhead of passing arguments, initializing additional storage,
and returning values. Your performance can be much better without recursive
calls.

 Mutual recursion might observe very poor performance, or even an infinite
loop, if two procedures call each other.

 Such a design presents the same problems as a single recursive procedure,
but can be harder to detect and debug.

 Calling with parentheses function procedure calls itself recursively, you must
follow the procedure name with parentheses, even if there is no argument

Creating Procedures
and Functions

NOTES

Self-Instructional
Material 145

list. Otherwise, the function name is taken as representing the return value
of the function.

 Testing write a recursive procedure, you should test it very carefully to
make sure it always meets some limiting condition.

 You should also ensure that you cannot run out of memory due to having
too many recursive calls.

7.5 KEY WORDS

 Library functions: The built-in functions which are defined in the Visual
Basic (VB) library.

 Numeric functions: Numeric functions are used to calculate numerical
expressions.

 String function: String functions are used to manipulate one or more string
arguments and after manipulation it returns a string value.

 Date and time functions: Date and Time functions are used to manipulate
the date and time values.

 Recursion: In computer science, recursion is a method of solving a problem
where the solution depends on solutions to smaller instances of the same
problem.

7.6 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is a function? How is it declared and called?

2. Give the definition of library function.

3. Explain the term numeric functions.

4. Define the term string functions.

5. Explain the date and time functions.

6. What are events? Give an example.

7. Explain the term procedure signature.

8. What are limiting conditions for recursive procedures?

Long-Answer Questions

1. Discuss about library function and its types with the help of examples.

2. Briefly discuss the difference between numeric and string functions giving
appropriate examples.

Creating Procedures
and Functions

NOTES

Self-Instructional
146 Material

3. Briefly explain about the different methods available for string manipulation
in Visual Basic giving syntax and example codes.

4. Elaborate briefly to add, remore and replace a string using in-built function.

5. Briefly discuss the use of procedures with the help of examples.

6. Differentiate between common method and common events giving examples.

7. Distinction between procedures and functions with the help of examples.

8. Describe the recursive function and considerations of recursive procedures.
Write the program for recursive function.

7.7 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Multiple Forms

NOTES

Self-Instructional
Material 147

UNIT 8 MULTIPLE FORMS
8.0 Introduction
8.1 Objectives
8.2 Startup Forms
8.3 Submain Procedure
8.4 Answers to Check Your Progress Questions
8.5 Summary
8.6 Key Words
8.7 Self-Assessment Questions and Exercises
8.8 Further Readings

8.0 INTRODUCTION

The Windows Form is a vital component in the development of any Windows
based application. Forms essentially provide the windows that make up a Windows
application. In fact, the terms window and form are often used interchangeably.
Forms allow the Visual Basic developer to create windows and layout controls
(such as, buttons, labels, etc.) in those forms to provide the application’s user
interface.

The main characteristic of a Form is the title bar on which the Form’s caption
is displayed. On the left end of the title bar is the Control Menu icon. Clicking this
icon opens the Control Menu. Maximize, Minimize and Close buttons can be
found on the right side of the Form. Clicking on these buttons performs the
associated function.A typical application has more than a single Form. When an
application runs the main Form is loaded. By setting the Project properties you
can control which Form is to be displayed in the Start-Up of the application.

A procedure is a block of Visual Basic statements enclosed by a declaration
statement (Function, Sub, Operator, Get, Set) and a matching End declaration.
All executable statements in Visual Basic must be within some procedure.
A Sub procedure is a series of Visual Basic statements enclosed by the Sub and End
Sub statements. The Sub procedure performs a task and then returns control to
the calling code, but it does not return a value to the calling code.

Each time the procedure is called, its statements are executed, starting with
the first executable statement after the Sub statement and ending with the first End
Sub, Exit Sub, or Return statement encountered.

Sub procedure can be define in modules, classes, and structures. By default,
it is Public, which means you can call it from anywhere in your application that has
access to the module, class, or structure in which you defined it. The
term method describes a Sub or Function procedure that is accessed from outside
its defining module, class, or structure.

Multiple Forms

NOTES

Self-Instructional
148 Material

In this unit, you will study about the multiple form, startup forms and submain
procedure.

8.1 OBJECTIVES

After going through this unit, you will be able to:

 Describe the basic concept of form

 Explain the appearance of forms

 Understand the common properties of form control

 Elaborate on the form related methods

 Explain about the procedure and submain procedure

8.2 STARTUP FORMS

Windows Form is a key element of any Windows-based application development.
The windows which make up a Windows application are essentially provided by
Forms. The terms window and shape are actually also used interchangeably. Forms
allow the developer of Visual Basic to build windows and layout controls in those
forms (such as, buttons, labels, etc.) to provide the user interface of the application.

The container for all the controls that make up the user interface is Visual
Basic Form. Each window you see in a simple visual application is a shape, so the
form and window terms represent the same entity. When you create a Windows
Forms Program, Visual Studio creates a default form for you.A typical application
has more than a single Form. When an application runs the main Form is loaded.
By setting the Project properties you can control which Form is to be displayed in
the Start-Up of the application.

Acontrol is an object that can be drawn on a Form object to enable or
enhance the user interaction with an application. Controls have properties that
define the aspects of their appearance, such as position, size and color, and the
aspects of their behaviour, such as their response to the user input. They can
respond to events initiated by the user or set off by the system. For instance, a
code could be written in a CommandButton control’s click event procedure that
would load a file or display a result.

The following are some important points about setting up the properties:

 You should set the Caption property of a control clearly so that a user
knows what to do with that command. For example, in the calculator
program, all the captions of the command buttons, such as +, - , MC
and MR are commonly found in an ordinary calculator and a user should
have no problem in manipulating the buttons.

 A lot of programmers like to use a meaningful name for the Name

Multiple Forms

NOTES

Self-Instructional
Material 149

property; may be, because it is easier for them to write and read the
event procedure, and debug or modify the programs later. However, it
is not a must to do as long as you label your objects clearly and use
comments in the program whenever you feel necessary.

 One more important property is whether the control is enabled or not.

 Finally, you must also consider making the control visible or invisible at
run-time or decide when it should become visible or invisible.

Creating a Form

A container control can hold other controls with in it, e.g., a Frame (there can be
multiple controls inside a frame) or a Picture Box (it holds a picture) or simply
your form (you can put so many controls on it). Controls inside containers are
known aschild controls. Child controls can exist completely inside their containers.
It means that you cannot move them outside their container and if you try to drag
them beyond the boundary of their container, a part of the control gets hidden.
When you delete a container control, all its child controls automatically get deleted.

Form Control

In VB (Visual Basic), the Form acts as the container for all the controls that form
the interface. The Form is the top-level object in a VB application, and every
application starts with the Form.

Appearance of Forms

The main characteristic of a Form is the title bar on which the Form’s caption is
displayed. On the left end of the title bar is the Control Menu icon. Clicking this icon
opens the control menu. Maximize, Minimize and Close buttons can be found on the
right side of the Form. Clicking on these buttons performs the associated function.

Figure 8.1 illustrates the appearance of a container control form.

Minimize
Button

Maximize
Button

Close
Button

Title Bar

Control Menu
Restore

Move

Size

Minimize

Maximize

Close Alt+F4

Fig. 8.1 General Appearance of Container Control Form

Multiple Forms

NOTES

Self-Instructional
150 Material

The control menu contains the following characteristics:

 Restore: Restores a maximized form to its size before it was maximized;
available only if the Form has been maximized.

 Move: Lets the user move the form around with the mouse.

 Size: Lets the user resize the control with the mouse.

 Minimize: Minimizes the form.

 Maximize: Maximizes the form.

 Close: Closes the form.

Some common properties used to customize a Form appearance are listed
in Table 8.1.

Table 8.1 Common Properties of Form Control

Property Description
MinButton,
MaxButton

These two properties, if True, display the Minimize and
Maximize buttons on the title bar. You can set them to False to
hide the corresponding button on the title bar. By default True.

ControlMenu This property displays the Control menu, if it is set to True . By
default, it isTrue. You can set it toFalse to hide the Control
menu icon.

BorderStyle Thisproperty determines the border’s style for a Form and also
its appearance. It can take any of the following values:

Value Description
0 None No border for form, cannot be

resized.
1 Fixed Single Visible border, but form cannot be

resized.
2 Sizable Visible border. Form can be moved

and resized also.
3 Fixed Dialog For fixed dialog boxes.
4 Fixed

ToolWindow
Form has a close button only, cannot
be resized.

5 Sizeable
ToolWIndow

Same as no. 4 but the form can be
resized.

BackColor Specifies the form’s background colour.
BorderStyle Determines how the form window appears.
Enabled Determines whether the form is active or not
Picture Determines a graphic image that appears on the background

of the form at run-time.

Following code is required to print ‘Welcome to Visual Basic’ on
Form1:

Private Sub Form_Load ()

 Form1.show

 Print “Welcome to Visual Basic”

End Sub

Multiple Forms

NOTES

Self-Instructional
Material 151

After executing the above program following snapshot appears:

Form Related Methods and Statements

Loading and Unloading Forms: A Form can generally be in one of the following
three possible states:

 Not Loaded: In this state, the form lives on the disk file and does not take
up any resources, such as memory, etc.

 Loaded and Hidden: In this state, the Form is loaded into memory and is
ready to be displayed.

 Loaded and Shown: In this state, the Form is shown, and the user can
interact with it.
The state of a Form can be changed by using Load, Unload, Show and

Hide.
Load and Unload statements are used to load and unload the forms. The

Load statement has the following syntax:

Load FormName

The Unload statement has the following syntax:

Unload FormName

The FormName variable is the name of the Form to be loaded or unloaded.
Unlike the Show method, which cares for both loading and displaying the Form,
the load statement does not show the Form. You have to call the Form’s Show
method to display it on the desktop.

Showing Forms: The Show method is used to display a Form. If the Form is
loaded but invisible, the Show method is used to bring the Form on top of the window.
If the Form is not loaded, the Show method loads it and then displays it.

Syntax of the Show method of the Form is follows:

FormName.Show mode

Multiple Forms

NOTES

Self-Instructional
152 Material

The FormName variable is the Form’s name, and the optional argument
mode determines whether the Form will be Modal or not. It can have one of the
following syntax:

0-Modeless (default)

1-Modal

Modeless Forms are the normal Forms. Modeless Forms interact with the
user and the user is allowed to switch to any other Form of the application. If you do
not specify the optional mode argument, by default the mode is set to modeless.

Modal Forms take total control of the application where the user cannot switch
to any other Form unless the Form is closed. A modal Form, thus, must have a Close
button or some means to close the Form in order to return to the Form where the
Modal Form was loaded.

Hiding Forms: The Hide method is used to hide a Form. The following is the
syntax of the Hide method:

FormName.Hide

To hide a Form from within its own code, the following code can be used:
Me.Hide

In the click event of the Hide button, the following code is entered:
Me.Hide

In the click event of the Unload button, the following code is entered.
Unload Me

Save the project and run the application. Once you click on the Hide button,
you can note that the Form is invisible but the application is still running. But when
you click on the Unload button, you can see that the application is terminated.

To know the difference between the unload and hide methods, we open a
new project and save the project. Draw two buttons on the Form and name those
as shown in Figure 8.2.

Fig. 8.2 Demonstration of Unload and Hide

Form_Load event: Many events attached to a Form. But here we discuss only
the most important one, i.e., the Form_Load event. This event occurs when the
form is loaded in the memory. The Form_Load () event procedure can be used in
preparing the form before showing it on the screen when the program is run.

Multiple Forms

NOTES

Self-Instructional
Material 153

You can open the Code Window for theForm_Load() event procedure
by double-clicking on the Form at an empty area. You can use this event procedure
to set various properties of controls on the Form. For example:

 You may set the caption text for Labels, Command Buttons, etc.
 You may even set the Form Caption, i.e. the text for the title bar of the

Form.

You can specify many more things in the Form_Load() event. The
following code shows a sample code written in a Form_Load() event
procedure.

cmdSave = ‘Save a Documents’

cmdCancel = ‘Cancel the Action’

lblCity.Caption = ‘Choose Name’

Form_Activate event: In the Form_Load event, you would perform tasks
that are of the initialization type. However, some tasks cannot be performed in the
Load event because the Form is fully loaded only after the completion of the Load
event. For one thing, printing to the Form will not work when done in the Load
event. In addition, if you want to set focus on a particular control on the Form during
the Load event, you will receive the message Run-time error ‘5’: Invalid procedure
call or argument. Assume, for example, you have a textbox called Text1 on the
form. The following code would result in an error:

Private Sub Form_Load()

 ‘other initialization stuff

 Text1.SetFocus ‘causes an error

 End Sub

How to Centre a Form on the Screen

The following code will centre a Form on the screen. It is best placed in the
Form_Load event.

Me.Top = (Screen.Height – Me.Height) / 2

Me.Left = (Screen.Width – Me.Width) / 2

In a VB (Visual Basic) project with multiple forms, it is good to centralize
the form-centring logic in a PublicSub procedure of a separate standard (BAS)
module. TheSub that accepts a Form object as parameter will look like this:

 Public Sub CenterForm(pobjForm As Form)

 With pobjForm

 .Top = (Screen.Height – .Height) / 2

 .Left = (Screen.Width – .Width) / 2

 End With

 End Sub

With the aboveSub in place, any form in the project can centre itself with
the following line of code:

CenterForm Me

Multiple Forms

NOTES

Self-Instructional
154 Material

Setting the Startup Form: A typical application has more than a single Form.
When an application runs, the main Form is loaded. By setting the Project properties,
you can control which Form is to be displayed in the Startup of the application.

Check Your Progress

1. Explain the term control?

2. State the one important property of control.

3. Define the term child controls.

4. State about the appearance of forms.

5. Explain the three states for loading and unloading forms.

6. Give syntax for hiding the form in Visual Basic (VB 6.0).

8.3 SUBMAIN PROCEDURE

A procedure is a block of Visual Basic statements enclosed by a declaration
statement (Function, Sub, Operator, Get, and Set) and a matching End declaration.
All executable statements in Visual Basic must be within some procedure.

Every Visual Basic application must contain a procedure called Main. This
procedure serves as the starting point and overall control for your application. The
.NET Framework calls your Main procedure when it has loaded your application
and is ready to pass control to it. Unless you are creating a Windows Forms
application, you must write the Main procedure for applications that run on their
own.

Main contains the code that runs first. In Main, you can determine which
form is to be loaded first when the program starts, find out if a copy of your
application is already running on the system, establish a set of variables for your
application, or open a DataBase that the application requires.

Requirements for the Main Procedure

A file that runs on its own (usually with extension .exe) must contain
a Main procedure. A library (for example, with extension .dll) does not run on its
own and does not require a Main procedure. The requirements for the different
types of projects you can create are as follows:

 Console applications run on their own, and you must supply at least
one Main procedure.

 Windows Forms applications run on their own. However, the Visual Basic
compiler automatically generates a Main procedure in such an application,
and you do not need to write one.

 Class libraries do not require a Main procedure. These include Windows
Control Libraries and Web Control Libraries. Web applications are deployed
as class libraries.

Multiple Forms

NOTES

Self-Instructional
Material 155

Declaring the Main Procedure

There are four ways to declare the Main procedure. It can take arguments or not,
and it can return a value or not.

Note: If you declare Main in a class, you must use the Shared keyword. In a
module, Main does not need to be shared.

 The simplest way is to declare a Sub procedure that does not take arguments
or return a value.
Module mainModule

 Sub Main ()

 MsgBox (“The Main procedure is starting the
application.”)

 ‘Insert call to appropriate starting place in
your code.

 MsgBox (“The application is terminating.”)

 End Sub

End Module

 Main can also return an Integer value, which the operating system uses as
the exit code for your program. Other programs can test this code by
examining the Windows ERRORLEVEL value. To return an exit code, you
must declare Main as a Function procedure instead of a Sub procedure.
Module mainModule

 Function Main () As Integer

 MsgBox (“The Main procedure is starting the
application.”)

 Dim return Value As Integer = 0

 ‘Insert call to appropriate starting place in
your code.

 ‘On return, assign appropriate value to
returnValue.

 ‘0 usually means successful completion.

 MsgBox (“The application is terminating with error
level” &

 CStr (returnValue) & “.”)

 Return returnValue

 End Function

End Module

 Main can also take a String array as an argument. Each string in the array
contains one of the command-line arguments used to invoke your program.
You can take different actions depending on their values.
Module mainModule

 Function Main(ByVal cmdArgs() As String) As Integer

Multiple Forms

NOTES

Self-Instructional
156 Material

 MsgBox(“The Main procedure is starting the
application.”)

 Dim returnValue As Integer = 0

 ‘ See if there are any arguments.

 If cmdArgs.Length > 0 Then

For argNum As Integer = 0 To UBound(cmdArgs, 1)

 ‘ Insert code to examine cmdArgs(argNum)
and take

 ‘ appropriate action based on its value.

 Next

 End If

 ‘ Insert call to appropriate starting place in
your code.

 ‘ On return, assign appropriate value to
returnValue.

 ‘ 0 usually means successful completion.

 MsgBox(“The application is terminating with
error level “ &

 CStr(returnValue) & “.”)

 Return returnValue

 End Function

End Module

 You can declare Main to examine the command-line arguments but not return
an exit code, as follows.
Module mainModule

 Sub Main(ByVal cmdArgs() As String)

 MsgBox(“The Main procedure is starting the
application.”)

 Dim returnValue As Integer = 0

 ‘ See if there are any arguments.

 If cmdArgs.Length > 0 Then

 For argNum As Integer = 0 To UBound(cmdArgs, 1)

 ‘ Insert code to examine cmdArgs(argNum)
and take

 ‘ appropriate action based on its value.

 Next

 End If

 ‘ Insert call to appropriate starting place in
your code.

 MsgBox(“The application is terminating.”)

 End Sub

End Module

Multiple Forms

NOTES

Self-Instructional
Material 157

Check Your Progress

7. What is a procedure?

8. List the requirements for the main procedure.

9. What is the simplest way to declare Sub procedure.

8.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. A control is an object that can be drawn on a Form object to enable or
enhance the user interaction with an application.

2. One more important property of control is whether the control is enabled
or not.

3. Controls inside containers are known as child controls. Child controls can
exist completely inside their containers.

4. The main characteristic of a Form is the title bar on which the Form’s caption
is displayed. On the left end of the title bar is the Control Menu icon. Clicking
this icon opens the control menu. Maximize, Minimize and Close buttons
can be found on the right side of the Form. Clicking on these buttons performs
the associated function.

5. Not loaded: In this state, the Form lives on the disk file and does not take
up any resources such as memory, etc.
Loaded and hidden: In this state, the Form is loaded into memory and is
ready to be displayed.
Loaded and shown: In this state, the Form is shown, and the user can
interact with it.

6. The Hide method is used to hide a Form. The following is the syntax of the
Hide method:
FormName.Hide

To hide a Form from within its own code, the following code can be used:
Me.Hide

7. A procedure is a block of Visual Basic statements enclosed by a declaration
statement (Function, Sub, Operator, Get, and Set) and a
matching End declaration. All executable statements in Visual Basic must
be within some procedure.

8. The requirements for the different types of projects you can create are as
follows:
 Console applications run on their own, and you must supply at least

one Main procedure.
 Windows Forms applications run on their own. However, the Visual

Basic compiler automatically generates a Main procedure in such an
application, and you do not need to write one.

Multiple Forms

NOTES

Self-Instructional
158 Material

 Class libraries do not require a Main procedure. These include Windows
Control Libraries and Web Control Libraries. Web applications are
deployed as class libraries.

 A procedure is a block of Visual Basic statements enclosed by a
declaration statement (Function, Sub, Operator, Get, Set) and a
matching End declaration. All executable statements in Visual Basic must
be within some procedure.

9. The simplest way is to declare a Sub procedure that does not take arguments
or return a value is a follows:
Module mainModule

 Sub Main ()
 MsgBox (“The Main procedure is starting the

application.”)
 ‘Insert call to appropriate starting place in your

code.
 MsgBox (“The application is terminating.”)

End Sub

End Module

8.5 SUMMARY

 The container for all the controls that make up the user interface is Visual
Basic Form. Each window you see in a simple visual application is a shape,
so the form and window terms represent the same entity.

 A control is an object that can be drawn on a Form object to enable or
enhance the user interaction with an application.

 Controls have properties that define the aspects of their appearance, such
as position, size and colour, and the aspects of their behaviour, such as their
response to the user input.

 The Caption property of a control clearly so that a user knows what to do
with that command. For example, in the calculator program, all the captions
of the command buttons, such as +, - , MC and MR are commonly found
in an ordinary calculator and a user should have no problem in manipulating
the buttons.

 A lot of programmers like to use a meaningful name for the Name property;
may be, because it is easier for them to write and read the event procedure,
and debug or modify the programs later.

 One more important property is whether the control is enabled or not.

 Finally, you must also consider making the control visible or invisible at run-
time or decide when it should become visible or invisible.

Multiple Forms

NOTES

Self-Instructional
Material 159

 A container control can hold other controls within it, for example, a Frame
(there can be multiple controls inside a frame) or a PictureBox (it holds a
picture) or simply your form (you can put so many controls on it).

 Controls inside containers are known as child controls. Child controls can
exist completely inside their containers.

 It means that you cannot move them outside their container and if you try to
drag them beyond the boundary of their container, a part of the control gets
hidden. When you delete a container control, all its child controls
automatically get deleted.

 In Visual Basic (VB), the Form acts as the container for all the controls that
form the interface. The Form is the top-level object in a VB application,
and every application starts with the Form.

 The main characteristic of a Form is the title bar on which the Form’s caption
is displayed. On the left end of the title bar is the Control Menu icon.

 Clicking this icon opens the control menu. Maximize, Minimize and Close
buttons can be found on the right side of the Form. Clicking on these buttons
performs the associated function.

 Restores a maximized form to its size before it was maximized; available
only if the Form has been maximized.

 Not loaded state, the Form lives on the disk file and does not take up any
resources ,such as memory, etc.

 Loaded and hidden state, the Form is loaded into memory and is ready to
be displayed.

 Loaded and shown state, the Form is shown, and the user can interact with
it.

 The FormName variable is the name of the Form to be loaded or unloaded.
Unlike the Show method, which cares for both loading and displaying the
Form, the load statement does not show the Form.

 The Show method is used to display a Form. If the Form is loaded but
invisible, the Show method is used to bring the Form on top of the window.
If the Form is not loaded, the Show method loads it and then displays it.

 The FormName variable is the Form’s name, and the optional argument
mode determines whether the Form will be Modal or not.

 Modeless Forms are the normal Forms. Modeless Forms interact with the
user and the user is allowed to switch to any other Form of the application.

 If you do not specify the optional mode argument, by default the mode is
set to modeless.

 Modal Forms take total control of the application where the user cannot
switch to any other Form unless the Form is closed.

Multiple Forms

NOTES

Self-Instructional
160 Material

 A modal Form, thus, must have a Close button or some means to close the
Form in order to return to the Form where the Modal Form was loaded.

 Many events attached to a Form. But here we discuss only the most important
one, i.e., the Form_Load event.

 This event occurs when the form is loaded in the memory. The Form_Load
() event procedure can be used in preparing the form before showing it on
the screen when the program is run.

 In theForm_Load event, you would perform tasks that are of the initialization
type. However, some tasks cannot be performed in the Load event because
the Form is fully loaded only after the completion of the Load event.

 For one thing, printing to the Form will not work when done in the Load
event. In addition, if you want to set focus on a particular control on the
Form during the Load event, you will receive the message Run-time error
‘5’: Invalid procedure call or argument.

 In a VB project with multiple forms, it is good to centralize the form-centring
logic in a Public Sub procedure of a separate standard module.

 A typical application has more than a single Form. When an application
runs, the main Form is loaded.

 By setting the Project properties, you can control which Form is to be
displayed in the Startup of the application.

 A procedure is a block of Visual Basic statements enclosed by a declaration
statement (Function, Sub, Operator, Get, Set) and a
matching End declaration. All executable statements in Visual Basic must
be within some procedure.

 Every Visual Basic application must contain a procedure called Main. This
procedure serves as the starting point and overall control for your application.

 The .NET Framework calls your Main procedure when it has loaded your
application and is ready to pass control to it.

 Unless you are creating a Windows Forms application, you must write
the Main procedure for applications that run on their own.

 Main contains the code that runs first. In Main, you can determine which
form is to be loaded first when the program starts, find out if a copy of your
application is already running on the system, establish a set of variables for
your application, or open a database that the application requires.

 A file that runs on its own (usually with extension .exe) must contain
a Main procedure.

 A library (for example, with extension .dll) does not run on its own and
does not require a Main procedure.

 Console applications run on their own, and you must supply at least
one Main procedure.

Multiple Forms

NOTES

Self-Instructional
Material 161

 Windows Forms applications run on their own. However, the Visual Basic
compiler automatically generates a Main procedure in such an application,
and you do not need to write one.

 Class libraries do not require a Main procedure. These include Windows
Control Libraries and Web Control Libraries. Web applications are deployed
as class libraries.

 There are four ways to declare the Main procedure. It can take arguments
or not, and it can return a value or not.

 The simplest way is to declare a Sub procedure that does not take arguments
or return a value.

8.6 KEY WORDS

 Form: Form allows the develope of Visual Basic to build window and
layout controls.

 Control: It is an object that can be drawn on a Form object for enabling or
enhancing user interaction with an application.

 Child controls: They are the controls inside containers.

 Container control: A control that can hold other controls within it.

 Procedure: A procedure is a block of Visual Basic statements enclosed
by a declaration statement (Function, Sub, Operator, Get, Set) and a
matching End declaration. All executable statements in Visual Basic must
be within some procedure.

 Main: Main contains the code that runs first.

8.7 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Explain the term control.

2. Define the term child form.

3. State about the form control.

4. Write the three states for loading and unloading forms.

5. What is Form load event?

6. Explain the term procedure.

7. What is the requirement for the Main procedure?

Multiple Forms

NOTES

Self-Instructional
162 Material

Long-Answer Questions

1. List the important points which should be kept in mind while setting up the
properties.

2. Discuss briefly about the forms with the help of example and diagrams.

3. Briefly discuss about the characteristics of control menu.

4. Write notes on the following giving examples.

a) Form_Load event

b) Form_Activate event

5. Briefly explain about the centring of a form on the screen.

6. Describe the submain procedure and Requirements for the Main Procedure?

7. Discuss about the declaration of the Main Procedure giving examples.

8.8 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Arrays

NOTES

Self-Instructional
Material 163

UNIT 9 ARRAYS
9.0 Introduction
9.1 Objectives
9.2 Arraya and Control Arrays

9.2.1 Fixed Size Arrays
9.2.2 Dynamic arrays
9.2.3 Array Characterstics
9.2.4 Processing Array Elements
9.2.5 Control arrays

9.3 Indexing and Event Handling
9.4 Graphics
9.5 Answers to Check Your Progress Questions
9.6 Summary
9.7 Key Words
9.8 Self-Assessment Questions and Exercises
9.9 Further Readings

9.0 INTRODUCTION

An array is a consecutive group of memory locations that all have the same name
and the same type. To refer to a particular location or element in the array, we
specify the array name and the array element position number.

The Individual elements of an array are identified using an index. Arrays
have upper and lower bounds and the elements have to lie within those bounds.
Each index number in an array is allocated individual memory space and therefore
users must evade declaring arrays of larger size than required. We can declare an
array of any of the basic data types including variant, user-defined types and object
variables. The individual elements of an array are all of the same data type.

In Visual Basic, a control array is a group of related controls in a Visual
Basic form that share the same event handlers. Control arrays are always single-
dimensional arrays, and controls can be added or deleted from control arrays at
runtime. One application of control arrays is to hold menu items, as the shared
event handler can be used for code common to all of the menu items in the control
array.

Control arrays are a convenient way to handle groups of controls that perform
a similar function. All of the events available to the single control are still available
to the array of controls, the only difference being an argument indicating the index
of the selected array element is passed to the event. Hence, instead of writing
individual procedures for each control (i.e. not using control arrays) write one
procedure for each array.

Event-driven programming is a programming paradigm in which the flow of
the program is determined by events such as user actions (mouse clicks, key

Arrays

NOTES

Self-Instructional
164 Material

presses), sensor outputs, or messages from other programs or threads. Event-
driven programming is the dominant paradigm used in graphical user interfaces and
other applications that are centred on performing certain actions in response to user
input.

Creating graphics was relatively easy in earlier versions of Visual Basic
because they have built-in drawing tools. For example, In Visual Basic 6.0, the
drawing tools are included in the Toolbox where the programmer just needs to
drag the shape controls into the form to create rectangle, square, ellipse, circle
and more. However, its simplicity has the shortcomings, do not have many choices
for creating customized drawings.

Before drawing anything on a Form in Visual Basic VB 6.0, create the
Graphics object in Visual Basic 6.0. A graphics object is created using
the CreateGraphics () method.

In this unit, you will study about the control array, indexing and event handling
and graphics in Visual Basic.

9.1 OBJECTIVES

After going through this unit, you will be able to:

 Know about the control arrays

 Understand the basics of arrays and its types

 Define the characteristics of array

 Discuss about the processing of elements of an array

 Elaborate on the concept of event handling and different types of events in
Visual Basic

 Explain about the graphics

9.2 ARRAYA AND CONTROL ARRAYS

An array is a set of similar items. All items in an array have the same name and are
identified by an index. Arrays allow you to refer to a series of variables by the
same name and to use a specific number (an index) to uniquely identify these
variables.

Syntax for Control Array is given as follows:
Dim Varname [([subscripts])] as [New] type [,varname....]

Example of declarations of arrays.
Dim nums(10) as integer

nums is an array containing 11 integers. nums(0) is the first element of the
array and nums(10) is the last element of the array. In this declaration 10 is
known as the upper bound of the array.

Dim x(10 to 20) as integer.

Arrays

NOTES

Self-Instructional
Material 165

x is an array containing 11 integers.x(10) is the first element of the array and
x(20) is the last element of the array. In this declaration, 10 is the lower
declaration and20 is the upper declaration.

For example, you want to compute the monthly sales of an organization. Sales
figures for each month have to be calculated. This means that you need to have at
least 12 variables, such as SaleJan, SaleFeb, SaleMar and SaleDec,
etc. You will agree that it is a cumbersome task to declare and manage twelve
variables when you can do so with one variable. For this, declare the variable in
the following manner:

Dim Saleval(11) as Long

Since there are twelve months,Saleval(0) will hold the sales figures of the
first month and Saleval(5) will hold the sales figures of the sixth month.
Arrays can have more than one dimension. A table of data will be represented by
a multidimensional array. To continue with the above example, if you want to
record the sales figures for twelve months of three departments of the organization,
you would declare the array as follows:

Dim Saleval(11,2) As Integer

Here, the subscript 11 indicates the months and the subscript 2 indicates the
departments.

This is a two-dimensional array. You can also have three-dimensional arrays.
If you want to record the sales of five products of three departments for twelve
months, then you need to declare a three-dimensional array as follows.

Dim Saleval(11,2,4) As Integer

Where the subscript 11 indicates months, the subscript 2 indicates the
three departments and the subscript4 indicates the 5 products.

The arrays that we have just declared are fixed sized arrays. We know the
total number of items that the array will hold. There are three types of arrays:

 Fixed Sized

 Dynamic

 Control

9.2.1 Fixed Size Arrays

Fixed arrays have a fixed size which can not be changed at fun time. These are
also known as array.

In the case of fixed sized arrays, it is compulsory to enter the upper bound
of an array in the parenthesis. The upper bound is the upper limit for the size of the
array. A declaration of fixed size arrays is as follows:

Private Counters(10) As Integer

The above code declares an array of 11 elements. In this code, 10 is the
upper bound of the array.

Arrays

NOTES

Self-Instructional
166 Material

To specify the lower bound of an array, provide it explicitly (as a Long
data type) using theTo keyword:

Dim Counter(1 To 10) As Integer

In the above declaration, the index numbers ofCounter range from 1
to 10.

9.2.2 Dynamic Arrays

Dynamic arrays are used when you do not know the number of elements for an
array. For example, when you are reading a string into an array, you may want to
have the capability of changing the size of the array at runtime.

A dynamic array can be resized at any time and this helps to manage the
memory efficiently. For example, you can use a large array for a short time and
then free memory to the system when the array is not in use. Alternatively, you can
increase the size of the array after declaring a smaller array.

9.2.3 Array Characterstics

Various characteristics of a VB array are as follows:

 An array contains several data elements, which are of the same data type
and share the same name, i.e., name of the array.

 An array index starts from0 to n-1when accessing the array elements or
assigning values to the array elements. For example, for anarray x(10),
x(0) refers to the first element of the array and x(9) refers to the last
element for the array.

 The number of subscripts in an array determines the dimension of the array.
For example:
Dim arr(5) As Integer ‘ Defines one- dimensional array
of size ‘5.

Dim arr(5,6) As Integer ‘ Defines two dimensional array
of ‘size 5x6.

9.2.4 Processing Array Elements

An array is a collection of different elements and each element of an array is called
subscripted variable. Using the following syntax, you can access these subscripted
variables:

<array name>(<element number>)

In this syntax, array name refers to the name of the array and the
element number specifies the array index number, which you want to
access. Now, consider the following code that processes of array elements:

Private Sub Form_Load()

Dim x As Integer

Dim a(5) As Integer ‘Declare an Integer array, array(5),
of ‘ 6 elements

Arrays

NOTES

Self-Instructional
Material 167

a(0) = 0

a(1) = 10

a(2) = 20

a(3) = 30

a(4) = 40

a(5) = 50

x = 0

For i = 0 To 5

x = a(i) + x

Next i

MsgBox (x)

End Sub

Figure 9.1 shows the Code window for processing array elements.

Fig. 9.1 Displaying the Code Window for Adding Array Elements

Compile and execute the above program. Figure 9.2 shows the sum of the
array elements.

Fig. 9.2 Output for Adding Array Elements

In the above code, first we have created an arraya(5) and then entered
different values for each element of the array. Then, we initialize a For…Next
loop fromi=0 to i=5. This loop extracts all the elements from the array one
by one. The line x = a(i) + x adds all these elements and stores into the
variable x. After extracting and adding all the elements of the array, the
msgbox () function prints the value of x on the message box. The box
displays the value 150 which is the sum of all the array elements.

Arrays

NOTES

Self-Instructional
168 Material

9.2.5 Control Arrays

A control array is a collection of more than one VB control that shares the same
name, which is the name of the array. All the controls in an array must be same,
such as an array of Labels. In a control array, each control has a unique index
number and you can access the control by using these unique numbers only. By
increasing the index number, you can access all the subsequent controls in an
array.

You can create a control array in the following two ways:

 Set the Index property of a control during the design time. For
example, if you set the index of aLabel to 0, then it will be the first
Label in the control array of labels.

 Create a control component on the design window. Now, click the
control component and press Ctrl+C to copy that control. After copying
the component, press Ctrl+V to paste that copied control. When you
paste the component, the Visual Basic (VB) compiler asks to create a
control array.

Figure 9.3 shows Microsoft Visual Basic warning dialog box.

Fig. 9.3 Warning for Creating a Control Array

Now, click Yes to create a control array, else click No.

You can use the following index to access each element of the control array:
<control array name>(array index)

You can also change the properties of the control array elements by using
the following syntax:

<control array name>(array index).<property name> =
<property value>

Check Your Progress

1. Give the definition of an arrays.

2. Why arrays are used?

3. How many types of array are used?

4. Define the term fixed size arrays.

5. What is the use of dynamic arrays?

6. Write one characteristics of array.

7. Explain the term control arrays.

8. Define the term subscripted variable.

Arrays

NOTES

Self-Instructional
Material 169

9.3 INDEXING AND EVENT HANDLING

Event Handling means performing some actions by using events. By using Event
Handling, we can perform Validations in windows application which is a built in
feature in the web application. For Web applications, we have several controls
which are used to perform validations. But there are no controls in windows
applications. By using this Event Handling Mechanism, we can achieve validations
in Windows Application also. There are two Types of Events as follows.

 Mouse Events

 Keyboard Events

The Events which are raised due to Mouse are called as Mouse Events. The
following table shows you some of the Mouse Events.

Event Description

MouseUp Raised when the Mouse pointer over the control

MouseDown Raised when the Mouse button released

MouseEnter Raised when the Mouse pointer enters the control

MouseHover Raised when the Mouse pointer moves on the control

MouseLeave Raised when the Mouse pointer leaves the control

The following table shows you some of the Properties of the Mouse.

Properties Description

Click Indicates the Number of Clicks

X Indicates the x-Coordinates of the mouse click

Y Indicates the y-Coordinates of the mouse click

Buttons Indicates the mouse button pressed

The Events which are raised due to Keyboard are called as KeyBoard Events.
The following table shows you some of the Keyboard Events.

Event Description

KeyUp Raised when the Key is released

KeyDown Raised when the Key is pressed down

KeyPress Raised when the Key is pressed

Arrays

NOTES

Self-Instructional
170 Material

The following table shows you some of the Properties of the Mouse.

Properties Description

KeyData Used to store the Key Data for the Event

KeyCode Used to store the Key Code for the Event

Handled Used to check whether the event is handled or not

KeyValue Used to store the Key Value for the Event

KeyChar Used to store the Character related to that key which is
pressed for the Event

Example

Following is an example, which shows how to handle mouse events. Consider the
following steps–

 Add three labels, three text boxes and a button control in the form.

 Change the text properties of the labels to - Customer ID, Name and
Address, respectively.

 Change the name properties of the text boxes to txtID, txtName and
txtAddress, respectively.

 Change the text property of the button to ‘Submit’.
 Add the following code in the code editor window —
Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs)
Handles MyBase.Load

 ‘ Set the caption bar text of the form.

 Me.Text = “tutorialspont.com”

 End Sub

 Private Sub txtID_MouseEnter(sender As Object, e As
EventArgs)_

 Handles txtID.MouseEnter

 ‘code for handling mouse enter on ID textbox

 txtID.BackColor = Color.CornflowerBlue

 txtID.ForeColor = Color.White

 End Sub

 Private Sub txtID_MouseLeave(sender As Object, e As
EventArgs) _

 Handles txtID.MouseLeave

 ‘code for handling mouse leave on ID textbox

 txtID.BackColor = Color.White

Arrays

NOTES

Self-Instructional
Material 171

 txtID.ForeColor = Color.Blue

 End Sub

 Private Sub txtName_MouseEnter(sender As Object, e As
EventArgs) _

 Handles txtName.MouseEnter

 ‘code for handling mouse enter on Name textbox

 txtName.BackColor = Color.CornflowerBlue

 txtName.ForeColor = Color.White

 End Sub

 Private Sub txtName_MouseLeave(sender As Object, e As
EventArgs) _

 Handles txtName.MouseLeave

 ‘code for handling mouse leave on Name textbox

 txtName.BackColor = Color.White

 txtName.ForeColor = Color.Blue

 End Sub

 Private Sub txtAddress_MouseEnter(sender As Object, e
As EventArgs) _

 Handles txtAddress.MouseEnter

 ‘code for handling mouse enter on Address textbox

 txtAddress.BackColor = Color.CornflowerBlue

 txtAddress.ForeColor = Color.White

 End Sub

 Private Sub txtAddress_MouseLeave(sender As Object, e
As EventArgs) _

 Handles txtAddress.MouseLeave

 ‘code for handling mouse leave on Address textbox

 txtAddress.BackColor = Color.White

 txtAddress.ForeColor = Color.Blue

 End Sub

 Private Sub Button1_Click(sender As Object, e As
EventArgs) _

 Handles Button1.Click

 MsgBox(“Thank you “ & txtName.Text & “, for your
kind cooperation”)

 End Sub

End Class

Arrays

NOTES

Self-Instructional
172 Material

When the above code is executed and run using Start button available at the
Microsoft Visual Studio tool bar, it will show the following window.

Try to enter text in the text boxes and check the mouse events.

Handling Keyboard Events

Following are the various keyboard events related with a Control class –
 KeyDown– occurs when a key is pressed down and the control has focus
 KeyPress– occurs when a key is pressed and the control has focus
 KeyUp– occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of
type KeyEventArgs. This object has the following properties–

 Alt– it indicates whether the ALT key is pressed
 Control– it indicates whether the CTRL key is pressed
 Handled– it indicates whether the event is handled
 KeyCode– stores the keyboard code for the event
 KeyData– stores the keyboard data for the event
 KeyValue– stores the keyboard value for the event
 Modifiers– it indicates which modifier keys (Ctrl, Shift, and/or Alt) are

pressed

 Shift– it indicates if the Shift key is pressed
The event handlers of the KeyDown and KeyUp events get an argument of
type KeyEventArgs. This object has the following properties–

 Handled– indicates if the KeyPress event is handled
 KeyChar– stores the character corresponding to the key pressed

Arrays

NOTES

Self-Instructional
Material 173

Example

Let us continue with the previous example to show how to handle keyboard events.
The code will verify that the user enters some numbers for his customer ID and
age.

 Add a label with text Property as ‘Age’ and add a corresponding TextBox
named TextAge.

 Add the following codes for handling the KeyUP events of the TextBox
TextID.

Private Sub txtID_KeyUP(sender As Object, e As
KeyEventArgs) _

 Handles txtID.KeyUp

 If (Not Char.IsNumber(ChrW(e.KeyCode))) Then

 MessageBox.Show(“Enter numbers for your Customer
ID”)

 txtID.Text = “ “

 End If

End Sub

 Add the following codes for handling the KeyUP events of the TextBox
txtID.

Private Sub txtAge_KeyUP(sender As Object, e As
KeyEventArgs) _

 Handles txtAge.KeyUp

 If (Not Char.IsNumber(ChrW(e.keyCode))) Then

 MessageBox.Show(“Enter numbers for age”)

 txtAge.Text = “ “

 End If

End Sub

When the above code is executed and run using Start button available at the
Microsoft Visual Studio ToolBar, it will show the following window –

Arrays

NOTES

Self-Instructional
174 Material

If you leave the text for age or ID as blank or enter some non-
numeric data, it gives a warning message box and clears the
respective text.

9.4 GRAPHICS

In Visual Basic 6.0, working with graphics is easy. In simple steps, VB 6.0 gives
you the versatility and power to render graphical applications. It is rich in functions
related to graphics. Methods, properties and events that are built-in allow you to
use these features most effectively. You can perform some graphical operations
via the graphic methods and properties. They allow you, more clearly, to draw
points, lines, circles, rectangles, ellipses, and other types.

Graphic Methods

You can draw on the shape and the PictureBox control using the graphic methods.
In Visual Basic 6, only the Shape object and the PictureBox control support graphics
methods. Later Visual Basic versions, however, allow you to use them with other
objects and controls.

The common graphic methods are explained below.

 Print: Print is the simplest graphic method in Visual Basic 6.0. This
method has been used throughout the earlier versions of the language. It
prints some text on the form or on the PictureBox control. It displays
texts.

 Cls: The Cls method is another simple graphic method that is used to
clear the surface of the form or the PictureBox control. If some texts are
present, you can use the Cls method to remove the texts. It clears any
drawing created by the graphic methods.

Arrays

NOTES

Self-Instructional
Material 175

 Point: The Point method returns the color value from an image for a
pixel at a particular point. This method is generally used to retrieve color
values from bitmaps.

 Refresh: The refresh method redraws a control or object. In other
words, it refreshes the control. Generally, controls are refreshed
automatically most of the times. But in some cases, you need to refresh
a control’s appearance manually by explicitly invoking the Refresh
method.

 PSet: The PSet method sets the color of a single pixel on the form. This
method is used to draw points.

 Line: The Line method draws a line. Using the Line method, you can
also draw other geometric shapes such as rectangle, triangle etc.

 Circle: The Circle method draws a circle. Using the Circle method, you
can also draw other geometric shapes such ellipses, arcs etc.

 PaintPicture: ThePaintPicture method displays an image on the form
at run-time.

 TextHeight: The TextHeight method returns the height of a string on
the form at run-time.

 TextWidth: The TextWidth method returns the width of a string on the
form at run-time.

The LoadPicture Function

The LoadPicture function loads a picture to the form or to the PictureBox control.
It sets the picture to the control in order to display it. The function takes the file
path as an argument. The LoadPicture function allows you to set pictures at run-
time.

Example:

Code:
Picture1 = LoadPicture(“C:\MyPic.JPG”)

Here, Picture1 is the PictureBox control. When this code is executed the picture is
loaded and set to the PictureBox control. If Visual Basic cannot find the picture in
the specified location, it throws a run-time error ‘53’.

The RGB function

The RGB function returns an integer, a color code which is used to set colors in
Visual Basic code. The RGB color code is a combination of red, green and blue
colors. Consider the following example to understand RGB function in Visual Basic
6.0 (VB 6.0)

Arrays

NOTES

Self-Instructional
176 Material

Example Code:

Form1.BackColor = RGB (120, 87, 55)

The RGB color is set as the background color of the form object. The first, second
and the third arguments represent red, green and blue colors respectively. The
color value is an integer. These values are in a range of 0 to 255. So you can use
any value between 0 and 255 to obtain a color.

Graphic Properties

The graphic properties are useful while working with the graphic methods. Some
of the form’s properties and some of the PictureBox’s properties are the graphics
properties.

The common graphic properties are discussed in this section.

Consider the following graphic properties.

 DrawMode: The DrawMode property sets the mode of drawing for
the appearance of output from the graphic methods. In the DrawMode
property, you can choose from a variety of values.

 DrawStyle: The DrawStyle property sets the line style of any drawing
from any graphic methods. It allows you to draw shapes of different line
styles such as solid, dotted, dashed shapes etc.

 DrawWidth: The DrawWidth property sets the line width of any drawing
from any graphic methods. While drawing shapes, you can control the
thickness of the lines using this property.

 FillColor: The FillColor property is used to fill any shapes with a color.
You may use the symbolic color constants to fill your shapes. You may
also use the color codes as well as the RGB function.

 FillStyle: The FillStyle property lets you fill shapes in a particular filling
style.

 ForeColor: The ForeColor property is used to set or return the
foreground color.

 AutoRedraw: Set the AutoRedraw property to True to get a persistent
graphics when you’re calling the graphic methods from any event, but
not from the Paint event.

 ClipControls: Set the ClipControls property to True to make the
graphic methods repaint an object.

 Picture: The Picture property is used to set a picture. Pictures can be
set both at design time and run-time.

Arrays

NOTES

Self-Instructional
Material 177

Run Time Graphic Properties

CurrentX and CurrentY are the run-time properties which are used to set and
return the position of a shape or point at run-time.

 CurrentX: The CurrentX property sets or returns the horizontal coordinate
or X-coordinate of the current graphic position at run-time.

 CurrentY: The CurrentY property sets or returns the vertical coordinate or
Y-coordinate of the current graphic position at run-time.

Printing On The Form

The following code prints some text on the form.

Example Code 1:

Private Sub cmdPrint_Click()

 Form1.Print “Hello world”

 Form1.Print “Welcome to Visual Basic 6”

 Form1.Print “Visual Basic is awesome!”

End Sub

The above code can be written in the following way too.

Example Code 2:

Private Sub cmdPrint_Click()

 Print “Hello world”

 Print “Welcome to Visual Basic 6”

 Print “Visual Basic is awesome!”

End Sub

In the above code, the Print method is called without the object name. Here
‘Form1’ is the object name. When you’re writing code inside the form module,
you may omit the form’s name while invoking its methods.

Drawing lines

The Line method lets you draw lines in Visual Basic 6.0. You need to specify the
starting point and the finishing point of the line in the argument. You may also
specify the color of the line.

Arrays

NOTES

Self-Instructional
178 Material

A Simple Line

The following code example shows how to draw a simple line using the Line
method in Visual Basic 6.0.

Code:
Private Sub cmdShow_Click()

 DrawWidth = 5

 ‘A hyphen is required between the points

 Line (0, 0)-(2000, 2000), vbBlue

End Sub

A Line with Drawing Styles

Form’s DrawStyle property help you to draw lines using a particular style. The
constant values of the DrawStyle property are 0 (vbSolid), 1 (vbDash), 2 (vbDot),
3 (vbDashDot, 4 (vbDashDotDot), 5 (vbTransparent) and 6 (vbInsideSolid). The
default value is 0, vbSolid. You may use the numeric constant or the symbolic
constant, such as vbSolid, vbDash etc., to change drawing styles in your code.

NOTE: The DrawStyle property does not work if the value of DrawWidth is
other than 1.

Arrays

NOTES

Self-Instructional
Material 179

A Circle Filled with Color

The following code example shows how to fill a circle with color in Visual Basic
6.0.

Private Sub cmdShow_Click()

 FillStyle = vbSolid

 FillColor = &H80C0FF

 DrawWidth = 3

 Circle (1800, 1800), 1000, vbRed

End Sub

Check Your Progress

9. Elaborate on the event handling in Visual Basic.

10. Write the types of events used in VB.

11. What is Graphics?

12. Explain the term LoadPicture function.

13. Elaborate on the drawing lines.

9.5 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. An array is a set of similar items. All items in an array have the same name
and are identified by an index.

2. Arrays allow you to refer to a series of variables by the same name and to
use a specific number (an index) to uniquely identify these variables.

Arrays

NOTES

Self-Instructional
180 Material

3. There are three types of arrays:

 Fixed Sized Array

 Dynamic Array

 Control Array

5. Fixed arrays have a fixed size which cannot be changed at run-time. These
are also known as Static Arrays.

6. An array contains several data elements, which are of the same data type
and share the same name, i.e., name of the array.

7. A control array is a collection of more than one VB control that shares the
same name, which is the name of the array. All the controls in an array must
be same, such as an array of Labels. In a control array, each control has a
unique index number and you can access the control by using these unique
numbers only. By increasing the index number, you can access all the
subsequent controls in an array.

8. An array is a collection of different elements and each element of an array is
called subscripted variable.

9. Event Handling means performing some actions by using events. By using
Event Handling, we can perform Validations in windows application which
is a built in feature in the web application.

10. There are two types of events as follows.

 Mouse Events

 Keyboard Events

11. In Visual Basic 6.0, various graphics methods and properties are used to
draw on a Form or PictureBox control. Graphics in Visual Basic 6.0 are
based on the Windows Graphics Device Interface (GDI) APIs. In Visual
Basic 6.0, graphics methods apply only to the Form object and to the
PictureBox control.

12. The LoadPicture function loads a picture to the form or to the PictureBox
control. It sets the picture to the control in order to display it. The function
takes the file path as an argument. The LoadPicture function allows you to
set pictures at run-time.

13. The Line method lets you draw lines in Visual Basic 6. You need to specify
the starting point and the finishing point of the line in the argument. You may
also specify the color of the line. This is optional, though.

9.6 SUMMARY

 An array is a set of similar items. All items in an array have the same name
and are identified by an index.

Arrays

NOTES

Self-Instructional
Material 181

 Arrays allow you to refer to a series of variables by the same name and to
use a specific number (an index) to uniquely identify these variables. You
want to compute the monthly sales of an organization. Sales figures for each
month have to be calculated. This means that you need to have at least 12
variables, such as SaleJan, SaleFeb, SaleMar and SaleDec, etc.

 You will agree that it is a cumbersome task to declare and manage twelve
variables when you can do so with one variable. For this, declare the variable
in the following manner.

 This is a two-dimensional array. You can also have three-dimensional arrays.
If you want to record the sales of five products of three departments for
twelve months, then you need to declare a three-dimensional array.

 In the case of fixed sized arrays, it is compulsory to enter the upper bound
of an array in the parenthesis. The upper bound is the upper limit for the size
of the array.

 Dynamic arrays are used when you do not know the number of elements
for an array.

 A dynamic array can be resized at any time and this helps to manage the
memory efficiently.

 A control array is a collection of more than one VB control that shares the
same name, which is the name of the array.

 An array index starts from 0 to n-1when accessing the array elements or
assigning values to the array elements. For example, for an array x(10),
x(0) refers to the first element of the array and x(9) refers to the last element
for the array.

 An array is a collection of different elements and each element of an array is
called subscripted variable.

 A control array is a collection of more than one VB control that shares the
same name, which is the name of the array.

 In a control array, each control has a unique index number and you can
access the control by using these unique numbers only. By increasing the
index number, you can access all the subsequent controls in an array.

 An array contains several data elements, which are of the same data type
and share the same name, i.e., name of the array.

 Event Handling means performing some actions by using events. By using
Event Handling, we can perform Validations in windows application which
is a built in feature in the web application.

 For Web applications, we have several controls which are used to perform
validations. But there are no controls in windows applications.

Arrays

NOTES

Self-Instructional
182 Material

 By using this Event Handling Mechanism, we can achieve validations in
Windows Application also.

 In Visual Basic 6.0, working with graphics is easy. In simple steps, VB6
gives you the versatility and power to render graphical applications.

 It is rich in functions related to graphics. Methods, properties and events
that are built-in allow you to use these features most effectively.

 You can perform some graphical operations via the graphic methods and
properties. They allow you, more clearly, to draw points, lines, circles,
rectangles, ellipses, and other types.

 You can draw on the shape and the PictureBox control using the graphic
methods.

 In Visual Basic 6.0, only the Shape object and the PictureBox control
support graphics methods.

 Print is the simplest graphic method in Visual Basic 6. This method has
been used throughout the earlier versions of the language. It prints some
text on the form or on the PictureBox control. It displays texts.

 The Cls method is another simple graphic method that is used to clear the
surface of the form or the PictureBox control. If some texts are present,
you can use the Cls method to remove the texts. It clears any drawing
created by the graphic methods.

 The Point method returns the color value from an image for a pixel at a
particular point. This method is generally used to retrieve color values from
bitmaps.

 The refresh method redraws a control or object. In other words, it refreshes
the control. Generally, controls are refreshed automatically most of the times.
But in some cases, you need to refresh a control’s appearance manually by
explicitly invoking the Refresh method.

 The PSet method sets the color of a single pixel on the form. This method is
used to draw points.

 The Line method draws a line. Using the Line method, you can also draw
other geometric shapes such as rectangle, triangle etc.

 The Circle method draws a circle. Using the Circle method, you can also
draw other geometric shapes such ellipses, arcs etc.

 The PaintPicture method displays an image on the form at run-time.

 The TextHeight method returns the height of a string on the form at run-
time.

 TextWidth method returns the width of a string on the form at run-time.

Arrays

NOTES

Self-Instructional
Material 183

 The LoadPicture function loads a picture to the form or to the PictureBox
control. It sets the picture to the control in order to display it.

 The function takes the file path as an argument. The LoadPicture function
allows you to set pictures at run-time.

 The RGB function returns an integer, a color code which is used to set
colors in Visual Basic code. The RGB color code is a combination of red,
green and blue colors.

 The graphic properties are useful while working with the graphic methods.
Some of the form’s properties and some of the PictureBox’s properties are
the graphics properties.

 The common graphic properties are discussed in this section. You’ll learn
more about them using code examples later in this tutorial.

 The DrawMode property sets the mode of drawing for the appearance of
output from the graphic methods. In the DrawMode property, you can
choose from a variety of values.

 The DrawStyle property sets the line style of any drawing from any graphic
methods. It allows you to draw shapes of different line styles such as solid,
dotted, dashed shapes etc.

 The DrawWidth property sets the line width of any drawing from any graphic
methods. While drawing shapes, you can control the thickness of the lines
using this property.

 The FillColor property is used to fill any shapes with a color. You may use
the symbolic color constants to fill your shapes. You may also use the color
codes as well as the RGB function.

 The FillStyle property lets you fill shapes in a particular filling style.

 The ForeColor property is used to set or return the foreground color.

 Set the AutoRedraw property to True to get a persistent graphics when
you’re calling the graphic methods from any event, but not from the Paint
event.

 Set the ClipControls property to True to make the graphic methods repaint
an object.

 The Picture property is used to set a picture. Pictures can be set both at
design time and run-time.

 CurrentX and CurrentY are the run-time properties which are used to set
and return the position of a shape or point at run-time.

 The Line method lets you draw lines in Visual Basic 6. You need to specify
the starting point and the finishing point of the line in the argument. You may
also specify the color of the line. This is optional, though.

Arrays

NOTES

Self-Instructional
184 Material

9.7 KEY WORDS

 Array: A set of similar items.

 Control array: A collection of more than one VB control that shares the
same name which is the name of the array.

 Indexing: Array indexing is the same as accessing an array element. You
can access an array element by referring to its index number. The indexes in
arrays start with 0, meaning that the first element has index 0, and the second
has index 1 etc.

 Event: An event is a message sent by an object within a program to the
main program loop, informing it that something has happened.

 Graphics: In Visual Basic 6.0, various graphics methods and properties
are used to draw on a Form or PictureBox control. Graphics in Visual
Basic 6.0 are based on the Windows Graphics Device Interface (GDI) APIs.
In Visual Basic 6.0, graphics methods apply only to the Form object and
to the PictureBox control.

 LoadPicture: LoadPicture function loads a picture to the form or to the
PictureBox control.

9.8 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Why we use control array?

2. Define the term fixed size arrays.

3. What are dynamic arrays?

4. Elaborate an the processing array elements.

5. Explain the term of indexing handling.

6. Define the term of event handling.

7. Explain the various types of events.

8. Elucidate on the graphics.

9. Explain the term RGB function.

10. Write the properties for run-time graphic.

11. How the lines are drawn?

Arrays

NOTES

Self-Instructional
Material 185

Long-Answer Questions

1. Discuss briefly the control arrays and its types.

2. Explain control arrays. How array elements can be processed in VB
program?

3. Difference between dynamic arrays and control arrays.

4. Discuss briefly characteristics of arrays.

5. Describe the indexing and event handling and types of event.

6. Differentiate between mouse and keyboard events, giving appropriate
example.

7. Explain the significance of Keyboard Events with the help of example?

8. Briefly discuss about the common method for graphics method.

9. Elaborate briefly on the LoadPicture and RGB function, giving examples.

10. Write the properties of graphics support your ans with the help of appropriate
example.

11. What are printing text? And how to print the text on the form?

12. Discuss about the drawing lines with the help of diagram.

9.9 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Arrays

NOTES

Self-Instructional
186 Material

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Menus

NOTES

Self-Instructional
Material 187

BLOCK IV
MENUS AND MDI FORMS

UNIT 10 MENUS
10.0 Introduction
10.1 Objectives
10.2 Menus

10.2.1 Using the Visual Basic Application Wizard
10.2.2 Using the Visual Basic Menu Editor

10.3 Answers to Check Your Progress Questions
10.4 Summary
10.5 Key Words
10.6 Self-Assessment Questions and Exercises
10.7 Further Readings

10.0 INTRODUCTION

The main objective in designing a program is to enhance the ease of use of the
features provided. Well-designed menus aid in accomplishing this objective. Menus
are perhaps the most noticeable feature of an application. Programmers cannot
always know what standard features they might wish to utilize in an application
until they have reached a much advanced stage in the development process. Thus,
while using the Application Wizard, it is preferable to select every program that
might be used. It can always be deleted later. The main advantage offered by the
Visual Basic (VB) Application Wizard is that it facilitates the making of menus that

already have the standard features of Windows loaded in them.

The primary aim of Microsoft is to standardize the Key Windows features
across all Windows Graphical User Interface (GUI). This implies that regardless
of the program in use – MS Access, MS Excel or MS Word – the Key features
will always appear and work similarly. For example, the manner of accessing the
printer feature is the same across all programs in the entire platform.

As you have worked with menus of various GUI environments, such as
Windows-XP or MS Word, you already know that there are generally two types
of menus: a horizontal menu known as menu bar and a vertical menu known as
pop-up menu or pull-down menu or simply submenu.

In this unit, you will study about the menus, create menus and adding a code
for menus in Visual Basic.

Menus

NOTES

Self-Instructional
188 Material

10.1 OBJECTIVES

After going through this unit, you will be able to:

 Discuss the significance of menus in Visual Basic programming

 Use the Visual Basic Application Wizard and Menu Editor

 Build simple menu with the application wizard

 Create complex menus and toolbars in Visual Basic (VB)

 Define the Pop-Up menu

 Explain Toolbar styles

10.2 MENUS

Adding well-built menus benefits all programs that have multiple features and
perform more than just a few simple functions. The key objective, while designing
a program, is to enhance the ease of use of the features provided. Well-designed
menus aid in accomplishing this objective. Menus are perhaps the most noticeable
feature of an application.

Forms and controls constitute the basic interface for creating an application.
However, you can make your program more user-friendly by adding menus to
them. Menus are a conventional and consistent way of grouping commands so
that they are readily and easily accessible to users.

The primary aim of Microsoft is to standardize the key Windows features
across all Windows Graphical User Interface (GUI). This implies that regardless
of the program in use – Access, Excel or Word – the key features will always
appear and work similarly. For example, the manner of accessing the printer feature
is the same across all programs in the entire platform.

As you have worked with menus of various GUI environments, such as
Windows-XP or MS Word, there are generally two types of menus: a horizontal
menu known as Menu Bar and a vertical menu known as Pop-Up Menu or
Pull-Down Menu or simplySubmenu.

Although you are familiar with various components of menus, let us summarize
them once again.

Menus

NOTES

Self-Instructional
Material 189

Table 10.1 Windows Standard Menu Conventions

Feature Convention

Menu Bar The horizontal bar containing different menu
options. Each menu option may have another
submenu attached to it.

Pop-Up Menu The vertical menu containing different menu
options.

or Pull Down Menu
Submenu A menu attached to a menu item.

Separator Bar A bar on a menu that divides menu items into logical
groups.

Caption One or more short specific words to describe a
command.

Organization Menu items must be grouped logically according
to their function and a minimal number of levels
should be allowed for accessing each feature.

Access Keys All menu items must be assigned an access key
(the letter that is underlined in a menu or menu
selection) that allows the menu choices to be
accessed through the keyboard. These keys must,
as a rule, be unique in every section of the menu
and are usually the first letter of the caption.

Shortcut Keys Shortcut keys should be assigned to menu features
that are used frequently or that need to be
accessible from any part of the program. A
particular shortcut key can only be assigned to a
single menu item.

Check Box A checked feature should directly be assigned in
the menu for each menu item that simply sets or
clears a single program option.

Ellipsis Menu items opening dialogs must be succeeded
by ellipses (...).

You can see that there are some grey menu items as well. These menu items
cannot be selected.

After talking about different components of menus, let us learn to create
menus in Visual Basic (VB). There are two different ways to create menus in VB.

10.2.1 Using the Visual Basic Application Wizard

With the improvements Visual Basic (VB 6.0) has brought to the Application Wizard,
fully customized menus can now be created directly in the menus. This is different

Menus

NOTES

Self-Instructional
190 Material

from the previous versions of VB, in which the standard menu options that could
be included in the application were limited to a select few.

Application Wizard Options

Programmers cannot always know what standard features they might wish to
utilize in an application until they have reached a much later stage in the development
process. Therefore, while using the Application Wizard, it is preferable to select
every program that might be used. It can always be deleted later.

The chief advantage offered by the VB Application Wizard is that it facilitates
the making of menus that already have the standard features of Windows loaded
in them. The user merely has to select the required features from a pre-given
template. Further, they come arranged in the Windows standard layout.

Limitations of the Application Wizard

The Application Wizard cannot be used to make modifications in existing projects.
Other third-party support programs are available that append additional functionality
to the existing project without necessitating further programming. However, add-
ins, such as the Menu Editor, that are included in Visual Basic (VB) can be used.

The Application Wizard functions as a tool that builds new applications.
This implies that it is used to build a functional application shell that has the standard
features. If additional features are required, they have to be programmed or the
Menu Editor can be used. Once Finish is clicked in the Application Wizard, and
the base program gets generated, any modification in the program will have to be
made using the Menu Editor.

Building a Simple Menu with the Application Wizard

1. Start the Application Wizard through the default dialog that opens when
Visual Basic (VB 6.0) starts or select New Project from the File menu.

New Project Dialog Box

Menus

NOTES

Self-Instructional
Material 191

2. Double-click the Application Wizard Icon to start the Wizard.

3. The Application Wizard Introduction Dialog Box will appear, which will
allow you to reuse the answers you saved during a previous Application
Wizard session. Ignore the default choice and click Next.

Application Wizard Introduction Dialog

If your settings are saved in the Application Wizard, then you need not re-
enter the choices that you have already made, and this saves valuable time. The
Toolbar and Menu settings are saved by the Application Wizard in a profile file
(.RWP). Not only can a consistent feel and look be achieved for your programs
through such profiles, but duplication of effort in building menus can also be
reduced. This is particularly helpful for large assignments that involve multiple
teams of developers working on disparate elements of a single huge application,
as it provides a common starting point.

Application Wizard Interface Type Dialog

Menus

NOTES

Self-Instructional
192 Material

4. In the Interface Type dialog, select the type for the initial application screen.
For this sample application, select Single Document Interface (SDI). Ignore
the default project name and click Next.

Window Standard Default Menu

5. A Windows standard default menu is created for you to begin to modify.
Not all possible choices are selected in the initial menu. After you make
your modifications, click Next.

6. The Application Wizard allows a browser, toolbar, resource file, database
connectivity and other templates to be customized. For this example, skip
these dialogs and click Next five times to get to the final dialog.

Customize Toolbar

7. In the last dialog, save your profile. Enter a name for your profile that relates
to your application. Then, click Finish to complete the Application Wizard.
(If you click Finish in any of the previous dialog boxes, you will be unable to
save the profile for future use.)

Menus

NOTES

Self-Instructional
Material 193

Profile—Resources Profile—Internet Connectivity

Profile—Standard Forms

The Created Application

10.2.2 Using the Visual Basic Menu Editor

To add menus to a VB application, invoke the Menu Editor. The Menu Editor
of Visual Basic (VB) is an interactive way to create and modify a menu and that
too with minimal coding. With it you can even create shortcut menus.

The Menu Editor is used for building menus with VB programs. It is visible
as an icon on the Visual Basic Integrated Development Enviorment (VB IDE)
toolbar.

Menus

NOTES

Self-Instructional
194 Material

Menu Editor Icon in Toolbar

Alternatively, it can also be invoked from the Tools menu as shown below:

Invoking the Menu Editor from Tools Menu Item

Building a Menu

The following steps must be carried out to build a menu:

1. Start a new Visual Basic (VB) project and open the Menu Editor using
either of the two methods mentioned above. The Menu Editor screen will
appear as follows:

Menu Editor Screen

Menus

NOTES

Self-Instructional
Material 195

2. In the ‘Caption’ column, type &File (locating the ampersand on the left
hand side of ‘F’ establishes ‘F’ as an access key for the File item. This
means the user can drop down the File menu by pressing ‘Alt+F’ or by
clicking the ‘File’ item with the mouse).
In the ‘Name’column, type mnuFile.

The following screenshot shows what your Menu Editor will appear as:

Adding Caption and Name in the Menu Editor

 Click Next.

3. Clicking the ‘right-arrow’ button (shown circled below) will make ellipses
(...) appear as the next item in the menu list. This indicates that it is a level-
two item (below ‘File’).

Showing Ellipses as the Next Item

Menus

NOTES

Self-Instructional
196 Material

In the ‘Caption’ column, type &New; in the ‘Name’ column, type mnuNew
and in the ‘Shortcut’ roll down list, select Ctrl+N. Specifying a shortcut allows the
user to access the related menu item by pressing that particular combination of
keys. So the user is provided with three options with which to invoke the ‘New’
function: (i) clicking New on the File menu (ii) pressing Alt+F,N (because an
access key is set up for N by locating an ampersand on the left hand side of ‘N’
in ‘New’) and (iii) pressing Ctrl+N. The following screenshot shows what the
screen will look like:

Specifying a Shortcut

Click Next.

4. In the ‘Caption’ column, type &Open; in the ‘Name’column, type
mnuOpen and in the ‘Shortcut’ roll down list, selectCtrl+O. The following
screenshot shows what your screen will look like at this point:

Changing Caption, Name and Shortcut

 Click Next.

Menus

NOTES

Self-Instructional
Material 197

5. In the ‘Caption’ column, type - (hyphen) and in the ‘Name’ column, type
mnuFileBar1. The hyphen provides for a separator bar to be created at
that point. The following screenshot shows what the screen will appear as
at this juncture:

Using Single Hyphen as Caption to Create a Separator Bar

 Click Next.

6. In the ‘Caption’ column, type&Save; in the ‘Name’ column, typemnuSave
and in the ‘Shortcut roll down list’, select Ctrl+S. Replicate this step for the
rest of the menu items.

7. In the ‘Caption’ column, type - (hyphen) and in the ‘Name’ column, type
mnuFileBar3. The following screenshot shows what you screen should
appear as:

Using Hyphen as Caption

Click Next.

Menus

NOTES

Self-Instructional
198 Material

8. Click the ‘left-arrow’ button (shown circled below). The fact that ellipses
(...) are not visible any more means that we are back to the top-level items.

In the ‘Caption’ column, type &Help and in the ‘Name’ column, type
mnuHelp. The following screenshot shows is what your screen should appear as:

Click Next.

9. This completes the creation of our menu entries. Click OK. This will close
the Menu Editor and return to Visual Basic Integrated Development
Environment (VB IDE).

10. In VB IDE, you will see your form having a menu depending on your Menu
Editor set up. Clicking on a top-level menu item (File, for example) will
drop down the level-two menu:

Menus

NOTES

Self-Instructional
Material 199

11. Click on New. The code window for the mnuFileNew_Click event will
open, as shown in the following figure:

Note: The single event that a menu item responds to is a Click.

In the Place mnuFileNew_Click event, place the code you want to be
executed when New is clicked. For our example, we will place a simple MsgBox
statement in the event procedure:

MsgBox “Code for ‘New’ goes here.”, vbInformation, “Menu
Demo”

12. Code similar MsgBox statements for the Save As, Open, Print and Save
menu items:

Private Sub mnuFileOpen_Click()

 MsgBox “Code for ‘Open’ goes here.”, vbInformation,
“Menu Demo”

End Sub

Private Sub mnuFileSave_Click()

 MsgBox “Code for ‘Save’ goes here.”, vbInformation,
“Menu Demo”

End Sub

Private Sub mnuFileSaveAs_Click()

 MsgBox “Code for ‘Save As’ goes here.”, vbInformation,
“Menu Demo”

End Sub

Menus

NOTES

Self-Instructional
200 Material

Private Sub mnuFilePrint_Click()

 MsgBox “Code for ‘Print’ goes here.”, vbInformation,
“Menu Demo”

End Sub

13. For the Exit menu item Click event, code the statement Unload Me.
Private Sub mnuFileExit_Click()

 Unload Me

End Sub

14. Run the program. Observe the execution of the code as the various menu
items are clicked. Test the use of the shortcut keys (e.g., Ctrl-O) and
access keys (e.g., Alt+F, N) as well.

15. Save the program and exit VB.

Creating Pop-Up Menus

Pop-Up Menus are floating menus that are displayed over forms, independent of
the menu bar.

The items will be displayed on the Pop-Up Menu depending on the position
of the pointer when the right mouse is clicked. This is the reason why Pop-Up
Menus are also known as context menus. In Windows 9x, menus are activated
by clicking the right mouse button.

For a Pop-Up Menu to be created, a menu has to be first defined through
the Menu Editor. In order to make certain that this menu is not displayed on
the Menu Bar, it is made invisible, that is, the visible check box in the Menu
Editor is kept unchecked for this menu.

It is possible to display any menu with a minimum of one menu item at run-
time as a Pop-Up menu. The Pop-UpMenu method can be used for displaying
Pop-Up Menus. The syntax for this method is as follows:

Syntax:
PopupMenu <menuname>

For example, the menu name mnuFile is displayed by the following code
when a user clicks a form with the right mouse button. The MouseUp or
MouseDown events too can be used for detecting when a user clicks the right
mouse button:

Private Sub Form_MouseUp(Button As Integer, Shift As
Integer, X As Single, Y As Single)

 If Button = 2 Then ‘ Button =2 indicate the right
mouse button is clicked.

Menus

NOTES

Self-Instructional
Material 201

 PopupMenu mnuFile

 End If

End Sub

The following example illustrates how to create a Pop-Up Menu (sometimes
called a right-click Menu or a Context Menu).

1. Begin a new Visual Basic (VB) project and place a label on the form. Give
the name lblTestText to the label. Give it the Caption Test Text.

2. Open the Menu Editor, and create a top-level item with a Caption value of
PopUpFormat and the Name mnuPopUpFormat. Also—importantly—
uncheck the Visible checkbox (see the circled item below). A menu has
to be invisible if it must be a Pop-Up Menu.

Unchecking the Visible Checkbox

3. Create the following level-two menu items below the Pop-UpFormat top-
level menu. (The Visible box must be kept checked when these level-two
items are created.)

Caption Name

Bold mnuBold

Italic mnuItalic

Underline mnuUnderline

- (hyphen) mnuFormatSep

Cancel mnuCancel

Menus

NOTES

Self-Instructional
202 Material

This is what your Menu Editor will appear as when you have finished:

4. Click OK to save your changes.

Note: When you return to Integrated Development Environment (IDE),
you will not be able to see this menu on the form (Because it is a pop-up
menu, it will be visible only when it is invoked through the code).

5. Code the lblTestText_MouseDown event as follows. Note that the Button
parameter is tested for vbRightButton; as is conventional; we wish the
menu to pop up only if the user right-clicks the label. If the right mouse
button is clicked, the Pop-Up Menu statement will be executed. This
statement will make the Pop-Up Menu appear.
Private Sub lblTestText_MouseDown(Button As Integer,

_

 Shift As Integer, _

 X As Single, _

 Y As Single)

 If Button = vbRightButton Then

 PopupMenu mnuPopUpFormat, vbPopupMenuRightButton

 End If

 End Sub

5. Code the mnuBold_Click event as shown below. Observe the use of the
Checked property of the menu item. A checkmark appears on the left side of
the menu item when it is set to True. The Checked property is typically used
as a toggle.

 Private Sub mnuBold_Click()

 If mnuBold.Checked Then

 lblTestText.FontBold = False

 mnuBold.Checked = False

Menus

NOTES

Self-Instructional
Material 203

 Else

 lblTestText.FontBold = True

 mnuBold.Checked = True

 End If

End Sub

6. Code the mnuItalic_Click and mnuUnderline_Click events in a similar
fashion as follows:

Private Sub mnuItalic_Click()

 If mnuItalic.Checked Then

 lblTestText.FontItalic = False

 mnuItalic.Checked = False

Else

 lblTestText.FontItalic = True

 mnuItalic.Checked = True

 End If

End Sub

Private Sub mnuUnderline_Click()

If mnuUnderline.Checked Then

 lblTestText.FontUnderline = False

 mnuUnderline.Checked = False

Else

 lblTestText.FontUnderline = True

 mnuUnderline.Checked = True

 End If

End Sub

7. Run the program and look at the several options you have coded.

8. Save the program and exit VB.

Note: If you so desire, it is possible to have both a ‘regular’ menu and several
pop-up menus on the same form. Wherever the Visible box of a top-level menu is
checked in the Menu Editor, it will appear at the top of the form in the menu bar
that is created. If this box is left unchecked, then that particular top-level menu will
not appear at the top of the form in the menu bar, but the Pop-Up Menu method
can be used to invoke it as a Pop-Up Menu.

Menus

NOTES

Self-Instructional
204 Material

Adding a Toolbar

A Toolbar provides the user with quick access to the more commonly used functions
of a program. It either complements a program’s menu structure or functions as a
stand-alone. A Toolbar control consists of an assortment of button objects that a
user can use to create toolbars that can easily be associated with an application.

1. Two controls are required to create a Toolbar in VB: the ImageList control,
containing the images that are to be used for the Toolbar buttons, and the
Toolbar itself. These controls form two of the nine controls of Microsoft
Windows Common Controls. You can make these controls accessible to
your VB project by going to the Project menu in Visual Basic Integrated
Development Enviorment (VB IDE) and selecting Components.

The Components Dialog Box appears. Check Microsoft Windows
Common Controls 6.0 (SP6) here.

Menus

NOTES

Self-Instructional
Material 205

Click the OK button. ImageList and Toolbar will appear in your toolbar
along with TreeView, ListView, Slider, StatusBar, ProgressBar, TabStrip
and ImageCombo.

Toolbox with the Windows Common Controls Added

2. Double-click the ImageList control to bring it onto the form.

Menus

NOTES

Self-Instructional
206 Material

The ImageList control is not visible at run-time and cannot be accessed
directly by the user. The objective of the ImageList control is to provide a repository
for images that are used by a number of other controls. ImageList is largely used
with the intent of supplying images to other controls such as ListView and TreeView
and to the Toolbar. Images are added to the ImageList through the design
environment (it can also be done in code), then the index or the key of the image
is referenced to be used in other controls.

Select ImageList, then click F4 to bring up the property list and give the
ImageList the name imlToolbarIcons.

3. Select the ImageList control on the form, right-click it and choose Properties
from the Context Menu. This displays the Property Pages of ImageList:

On the General tab, select 16 × 16.

4. Click on Images. The following screenshot shows what the Property Pages
dialog will appear as:

The next step is to click the Insert Picture button repeatedly, choose an
image and set the Key property until all the desired images have been loaded.

Menus

NOTES

Self-Instructional
Material 207

When Insert Picture is clicked for the first time, the Select picture dialog box will
appear. Navigate to the following folder:

\Program Files\Microsoft Visual Studio\Common\Graphics\Bitmaps\
TlBr_W95.

Various standard Toolbar images are contained in this folder. For the first
image, click New.bmp as shown in the following screenshot:

Click on Open to select the image and dismiss the ‘Select picture’ dialog
box (double-clicking the ‘New.bmp’ file has the same effect). Now, the image will
appear in the Images area of the Images tab of the Property Pages as shown in the
following screenshot. Type New in the Key area.

Repeat the above process as you add the following images (type ‘Open’,
‘Save’, ‘Print’ and ‘Help’, respectively, for Key):

Menus

NOTES

Self-Instructional
208 Material

Open.bmp

Save.bmp

Print.bmp

Help.bmp

 The Property Pages dialog will appear as follows:

Here, click OK to dismiss the Property Pages dialog.

5. The task is to bring the Toolbar control onto the form. Double-click the
Toolbar control on the toolbox. By default, the Toolbar will be aligned with
the top of the form, below the menu, if you have one.

6. Keeping the Toolbar selected, press F4 to bring up the regular properties
window and set the (Name) property to tbrMenuOpts. Following this,
right-click the toolbar and select Properties to bring up the Property Pages
dialog. On the General tab, set ImageList to ‘imlToolbarIcons’ (the
ImageList that was added to this form)—remember, the toolbar must get
its images from the images stored in an ImageList control. Also, set the
Style property to ‘1 – tbrFlat’ (the default is ‘0–tbrStandard’).

Menus

NOTES

Self-Instructional
Material 209

Table 2.2 explains the difference between the Standard and Flat Toolbar
Styles:

Table 2.2 Standard versus Flat Toolbar Styles

Standard Flat

In the Standard style, which is also the

classic, older style, the buttons of the

toolbar appear raised at all times. This

was the only style available up through

VB 5.0.

With the Flat style, the toolbar buttons

remain flat. When you pass over one of

the buttons with the mouse, that button

will appear raised. This was the

prevalent style in the Microsoft

products of the late 1990s.

7. On the Buttons tab of the Property Pages dialog, click Insert Button and
set the following properties:

 Set the Key property to ‘New’. The Key property of a toolbar button
is a string that distinctively classifies that particular button among the
many buttons of a given toolbar. In the sample program given here,
the Key property has been used to make out which button has been
pressed by the user (the Index property too can be used to identify
the button, but it is more difficult to do so this way).

 Set the ToolTipText property to ‘New’. This is text that pops up in
a little yellow label when the mouse is moved over the button.

 Set the Image property to ‘1’ or ‘New’. This is how an image is tied
in the ImageList control to a button on the Toolbar. The value that is

Menus

NOTES

Self-Instructional
210 Material

typed for the Image property here refers to either the Index or the
Key property of the desired image in the ImageList control.

The Property Pages dialog box should appear as follows:

Click the ‘Insert Button’ button again. Ignore the Key, ToolTipText and
Image properties and set the Style property to ‘3–tbrSeparator’. If you look
back at the screenshot showing the Flat Toolbar style, you will notice a vertical
line separating each button in the Toolbar. This is achieved by setting the Style
property of every other button to ‘3–tbrSeparator’. The following screenshot
shows what the Property Pages Dialog Box will appear as:

Menus

NOTES

Self-Instructional
Material 211

To finish setting up the toolbar, set the following properties upon each click
of ‘Insert Button’:

Index
(do not type in—VB

will automatically
supply these)

Key Style ToolTipText Image

3 Open 0–tbrDefault Open 2 (or ‘Open’)

4 3–tbrSeparator

5 Save 0–tbrDefault Save 3 (or ‘Save’)

6 3–tbrSeparator

7 Print 0–tbrDefault Print 4 (or ‘Print’)

8 3–tbrSeparator

9 Help 0–tbrDefault Help 5 (or ‘Help’)

10 3–tbrSeparator

When you complete the setting up of the Buttons, click OK to dismiss the
Property Pages dialog box.

8. The final task now is to code the Click event for the Toolbar that will test
which button the user presses and accordingly call the corresponding menu
click event procedure (the menu events have already been coded). For
instance, if the the Open button on the Toolbar is clicked, the
mnuFileOpen_Click event procedure will have to be called. Double-
clicking the toolbar will open the code window with the ButtonClick event
for the Toolbar, which is the event we want to code for. The Sub Procedure
header will look as follows:
Private Sub tbrMenuOpts_ButtonClick(ByVal Button As

MSComctlLib.Button)

A button object is passed by VB to the event procedure, which represents
the Toolbar button that the user clicks. To test which button has been clicked by
the user, the Index or Key property of the button object must be tested (using a
standardobject.property syntax, like ‘Button.Index’ or ‘Button.Key’). In the sample
program, ‘Button.Key’ is used. The coding is as follows:

Private Sub tbrMenuOpts_ButtonClick(ByVal Button As

MSComCtlLib.Button)

Select Case Button.Key

Case “New”

mnuFileNew_Click

Case “Open”

mnuFileOpen_Click

Menus

NOTES

Self-Instructional
212 Material

Case “Save”

mnuFileSave_Click

Case “Print”

mnuFilePrint_Click

Case “Help”

mnuHelpAbout_Click

End Select

End Sub

9. Run the program. When a Toolbar button (such as ‘Print’) is clicked, the
corresponding menu procedure code will be executed:

10. Once you are done, save the program and exit VB.

Check Your Progress

1. Define the term menu.

2. How many types of menus are in Visual Basic?

3. What is separator bar in menus?

4. Elaborate on grey menu items.

5. Give the definition of Profile File.

6. How the menus are added to a Visual Basic application?

7. Explain about the Pop-Up menus.

8. What are the function of a Toolbar?

9. Elaborate on the purpose of the ImageList control.

Menus

NOTES

Self-Instructional
Material 213

10.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Menus are perhaps the most noticeable feature of an application.

2. Generally, there are two types of menus: horizontal menu, known as menu
bar, and vertical menu, known as Pop-Up menu or Pull-Down menu or
simply Submenu.

3. A bar on a menu that divides menu items into logical group.

4. The menu items that are disabled and cannot be selected are known as grey
menu items.

5. Profiles provide the basis for a consistent look and feel to your programs
while reducing duplicate effort in building the menus. This allows for a
common starting point in the development of an application, which is helpful
in large projects in which many teams of developers might be working on
separate parts of a single large application.

6. To add menus to a Visual Basic application, invoke the Menu Editor.

7. A Pop-Up menu is a floating menu that is displayed over a form, independent
of the menu bar. The items displayed on the Pop-Up menu depend on
where the pointer was located when the right mouse button was pressed;
therefore, Pop-Up menus are also called Context menu.

8. The Toolbar provides the user quick access to the most commonly used
functions of a program. A Toolbar can be used as a stand-alone or as a
complement to the program’s menu structure. A Toolbar control contains a
collection of button objects used to create a ToolBar that you can associate
with an application.

9. The purpose of the ImageList control is to provide a repository for images
that are used by several other controls. The ImageList must be used to
supply images to the toolbar as well as to other controls, such as the TreeView
and ListView.

10.4 SUMMARY

 Adding well-built menus benefits all programs that have multiple features
and perform more than just a few simple functions.

 The chief objective, while designing a program, is to enhance the ease of
use of the features provided. Well-designed menus aid in accomplishing this
objective. Menus are perhaps the most noticeable feature of an application.

 Forms and controls constitute the basic interface for creating an application.

 Menus are a conventional and consistent way of grouping commands so
that they are readily and easily accessible to users.

Menus

NOTES

Self-Instructional
214 Material

 The primary aim of Microsoft is to standardize the chief Windows features
across all Windows Graphical User Interface (GUI).

 This implies that regardless of the program in use – Access, Excel or Word
– the chief features will always appear and work similarly. For example, the
manner of accessing the printer feature is the same across all programs in
the entire platform.

 As you have worked with menus of various Graphical User Interface (GUI)
environments, such as Windows- XP or MS Word, you already know that
there are generally two types of menus: a horizontal menu known as menu
bar and a vertical menu known as Pop-Up menu or Pull-Down menu or
simply Submenu.

 The horizontal bar containing different menu options. Each menu option
may have another Submenu attached to it.

 A bar on a menu that divides menu items into logical groups.

 Menu items must be grouped logically according to their function and a
minimal number of levels should be allowed for accessing each feature.

 All menu items must be assigned an access key (the letter that is underlined
in a menu or menu selection) that allows the menu choices to be accessed
through the keyboard.

 Shortcut keys should be assigned to menu features that are used frequently
or that need to be accessible from any part of the program. A particular
shortcut key can only be assigned to a single menu item.

 A checked feature should directly be assigned in the menu for each menu
item that simply sets or clears a single program option.

 With the improvements Visual Basic 6.0 (VB 6.0) has brought to the
Application Wizard, fully customized menus can now be created directly in
the menus.

 This is different from the previous versions of Visual Basic (VB), in which
the standard menu options that could be included in the application were
limited to a select few.

 Programmers cannot always know what standard features they might wish
to utilize in an application until they have reached a much later stage in the
development process.

 Therefore, while using the Application Wizard, it is preferable to select every
program that might be used. It can always be deleted later.

 The chief advantage offered by the Visual Basic (VB) Application Wizard
is that it facilitates the making of menus that already have the standard
features of Windows loaded in them.

 The user merely has to select the required features from a pre-given template.
Further, they come arranged in the Windows standard layout.

Menus

NOTES

Self-Instructional
Material 215

 The Application Wizard cannot be used to make modifications in existing
projects.

 Other third-party support programs are available that append additional
functionality to the existing project without necessitating further programming.

 The Application Wizard functions as a tool that builds new applications.

 This implies that it is used to build a functional application shell that has the
standard features.

 If additional features are required, they have to be programmed or the Menu
Editor can be used.

 Once Finish is clicked in the Application Wizard, and the base program
gets generated, any modification in the program will have to be made using
the Menu Editor.

 Start the Application Wizard through the default dialog that opens when
Visual Basic 6.0 (VB 6.0) starts or select New Project from the File menu.

 The Application Wizard Introduction dialog box will appear, which will allow
you to reuse the answers you saved during a previous Application Wizard
session.

 If your settings are saved in the Application Wizard, then you need not re-
enter the choices that you have already made, and this saves valuable time.

 The Toolbar and menu settings are saved by the Application Wizard in a
Profile File (. RWP).

 This is particularly helpful for large assignments that involve multiple teams
of developers working on disparate elements of a single huge application,
as it provides a common starting point.

 To add menus to a Visual Basic (VB) application, invoke the Menu Editor.
The Menu Editor of Visual Basic (VB) is an interactive way to create and
modify a menu and that too with minimal coding. With it you can even
create shortcut menus.

 Pop-Up menus are floating menus that are displayed over forms, independent
of the menu bar.

 The items will be displayed on the Pop-Up menu depending on the position
of the pointer when the right mouse is clicked.

 This is the reason why Pop-Up menus are also known as Context menus.
In Windows 9x, menus are activated by clicking the right mouse button.

 For a Pop-Up menu to be created, a menu has to be first defined through
the Menu Editor.

 In order to make certain that this menu is not displayed on the menu bar, it
is made invisible, and that is, the visible check box in the menu editor is kept
unchecked for this menu.

Menus

NOTES

Self-Instructional
216 Material

 It is possible to display any menu with a minimum of one menu item at run-
time as a pop-up menu. The Pop-Up menu method can be used for
displaying Pop-Up menus.

 A ToolBar provides the user with quick access to the more commonly used
functions of a program.

 It either complements a program’s menu structure or functions as a
standalone. A ToolBar control consists of an assortment of button objects
that a user can use to create toolbars that can easily be associated with an
application.

 Two controls are required to create a ToolBar in Visual Basic (VB).

 The ImageList control, containing the images that are to be used for the
ToolBar buttons, and the Toolbar itself.

 The ImageList control is not visible at run-time and cannot be accessed
directly by the user.

 ImageList is largely used with the intent of supplying images to other controls
such as ListView and TreeView and to the toolbar.

 Images are added to the ImageList through the design environment (it can
also be done in code), then the index or the key of the image is referenced
to be used in other controls.

 A button object is passed by Visual Basic (VB) to the event procedure,
which represents the ToolBar button that the user clicks.

 To test which button has been clicked by the user, the Index or Key property
of the button object must be tested (using a standard object. propertysyntax,
like ‘Button.Index’ or ‘Button.Key’). In the sample program, ‘Button.Key’
is used.

10.5 KEY WORDS

 Menus: A conventional and consistent way of grouping commands so that
they become readily and easily accessible to users.

 Menu bar: The horizontal bar containing different menu options.

 Pop-up or pull-down menu: A vertical menu containing different options.

 Submenu: A menu attached to a menu item.

 Separator bar: A bar on menu that divides menu items into logical groups
on a menu.

 Caption: One or two short specific words to describe a command.

 Access keys: The keys that provide access to the menu choices.

 Profile: The feature that provides for a common starting point in the
development of an application, which is helpful in large projects.

Menus

NOTES

Self-Instructional
Material 217

10.6 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is Menu bar?
2. List the steps to create a Toolbar.
3. Why we use profile file in Visual Basic menus?
4. Define the term Pop-Up Menu.
5. Give the definition of Context Menu.
6. What is the significance short cut keys?

7. What will happen if two menu items are assigned the same access keys?

Long-Answer Questions

1. Create a new project with the following menu bar items
Listen, Read and Write. The Write submenu should have the following
options: Pen, Pencil and Keyboard.
The Read submenu should have the following options: Magazine, Guide
and Screen. The Listen submenu should have the following options:
Television and Radio.

2. Insert menus to the Atm.vbp project that appears in the VB
Samples\PGuide\Atm folder. On the opening form, add a File | Exit option
and a Language menu bar option with the following pull-down checked
choices: Spanish, French, Italian, German and English. Refrain from using
special foreign characters unless they can be easily accessed from the
keyboard and you are habituated to using them. When the application is
first started by the user, checkmark should be put next to the English option
but it should be moved when the user selects an option or clicks the
corresponding command button. Add another menu to the Welcome form
that includes a File | Exit option. Unlike the Welcome form’s OK button,
ensure that the application is completely terminated by the menu’s File | Exit
command on that form.

3. Create an application with a menu bar and a toolbar to create a text file,
navigate and open it, edit it and save your changes.

4. Write down the various ways to open the Menu Editor Dialog Box and
explain these ways.

5. Write down a program to create a menu named Numbers. The Numbers
menu contains three options, Digits, Numbers and Boolean. The Boolean
option has two sub options, True and False. Also assign a shortcut key,
Ctrl+N, to the Numbers menu.

6. Write down a program, considering the question number 5, where you
need to convert the two sub options of the Boolean option into Pop-Up
menu.

Menus

NOTES

Self-Instructional
218 Material

7. John is a software application developer. His team leader assigns a task to
create an application, in which whenever a user right-click the form, it should
display the following options:
A. Copy
B. Paste
C. Delete
D. Properties

 8. Write the steps to create a menu named Edit that contains four options:
A. Copy
B. Paste
C. Insert
D. Delete

9. Design a VB application that displays the following menus:
Student View Exit
New Student Report Card Topper’s Details

10.7 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Using MDI Forms

NOTES

Self-Instructional
Material 219

UNIT 11 USING MDI FORMS
11.0 Introduction
11.1 Objectives
11.2 Multiple Document Interface (MDI) Forms

11.2.1 Accessing Child Forms
11.2.2 Adding, Loading and Unloading Forms

11.3 Answers to Check Your Progress Questions
11.4 Summery
11.5 Key Words
11.6 Self-Assessment Questions and Exercises
11.7 Further Readings

11.0 INTRODUCTION

Multiple Document Interface (MDI) is used to open various windows at the same
time. Parent Window contains other document windows and provides Graphical
User Interface (GUI) workspace in the application. Visual Basic applications contain
only one MDI form which contains other child forms. To work with child form you
need to set the True status in child property. At run time, child forms are displayed
within its editing area of an MDI form. The MDI is designed for creating document
cantered applications. This application provides a user many similar documents at
the same time.

The Multiple Document Interface (MDI) was designed to simplify the
exchange of information among documents, all under the same roof.

Windows applications that can open multiple documents at the same time
and allow the user to switch among them with a mouse-click. Multiple Word is a
typical example, although most people use it in single document mode. Each
document is displayed in its own window, and all document windows have the
same behaviour. The main Form, or MDI Form, is not duplicated, but it acts as a
container for all the windows, and it is called the parent window. The windows in
which the individual documents are displayed are called Child windows.

An MDI application must have at least two Form, the parent Form and one
or more child Forms. Each of these Forms has certain properties. There can be
many child forms contained within the parent Form, but there can be only one
parent Form.

In this unit, you will study about the MDI forms, basic building blocks,
creation of MDI form and Child forms.

Using MDI Forms

NOTES

Self-Instructional
220 Material

11.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the significance of Multiple Document Interface (MDI)

 Explain about the basic MDI applications

 Discuss about the built-in capabilities of MDI

 Elaborate on the concept of Child form

 Know about the adding, loading and unloading forms in Visual Basic

11.2 MULTIPLE DOCUMENT INTERFACE
(MDI) FORMS

In Visual Basic (VB), a document centered application is created with the help of
two forms. These two forms refer to Multiple Document Interface (MDI) Form
and a child form. The designed MDI application provides all features which are
available in Notepad application in Microsoft Windows. If a user clicks on
FileNew menu each time a new child Window is created and displayed on the
screen. The Form1 is a single form. In Visual Basic, you can use MDI Form, a
form that can contain multiple forms. To create MDI Form in Visual Basic you
need to select Form1 from Project1 menu list. Then you can get a shortcut menu
by pressing the right mouse button as shown in the following screen.

Start Visual Basic Standard Exe project. In the Project Window, select
AddMDI Form from a pop-up menu. In the dialog Window, select Open
button and then go to Form1. Change the MDI Child Property of Form1 into
True. This will make Form1 as child form instead of parent. In the Visual Basic
menu, select ProjectProject1 Properties. In the General tab, Startup Object
drop-down list select MDIForm1 and then OK button. This is to make Visual
Basic run for the first time by calling the MDI Form.

Using MDI Forms

NOTES

Self-Instructional
Material 221

After clicking on OK button you will get the MDIForm1 tab that provides
you Form1 Windows.

MDI is designed to exchange information between documents. With the
main application you can maintain multiple open windows but not multiple copies
of the application. Data exchange is easier when you can view and compare many
documents simultaneously.

MDI Applications

MDI applications use multiple child forms within parent window. These applications
let a user to work on various sets of data. Dragging information between child
windows use a Windows menu through which you can extract information between
various windows. MDI allows you to create an application that maintains multiple
forms within a single container form. Applications, such as Microsoft Excel and
Microsoft Word for Windows have multiple document interfaces. An MDI
application allows the user to display multiple documents at the same time with
each document displayed in its own window. Documents or child windows are
contained in a parent window which provides a workspace for all the child windows
in the application. For example, Microsoft Excel allows you to create and display
multiple document windows of different types. Each individual window is confined
to the area of the Excel parent window. When you minimize the Excel application

Using MDI Forms

NOTES

Self-Instructional
222 Material

the document windows is also minimized as well and only the parent window’s
icon appears in the task bar. When a child form is minimized its icon appears
within the workspace of the MDI form instead of on the taskbar, as shown in the
following screen in which child forms are displayed within the workspace of the
MDI form.

The application can also include standard, non-MDI forms that are not
contained in the MDI form. A typical use of a standard form in an MDI application
is to display a modal dialog box. An MDI form is similar to an ordinary form
except that you cannot place a control directly on a MDI form unless that control
has anAlign property, such as a picture box control or has no visible interface,
such as a timer control. The following steps are required to create an MDI form
and its child forms:

 Create an MDI form. From the Project menu, choose Add MDI Form.
An application can have only one MDI form. If a project already has an
MDI form the ‘Add MDI Form’ command on the Project menu is
unavailable.

 Create the application’s child forms.
In Visual Basic 6.0, MDI applications are created by adding an MDI form

to a project and then setting the MDIChild property of any child form. In
Visual Basic 6.0, an MDI application having a form that is not an MDI child does
not end until that form is closed even if the MDI parent is closed. The application
ends when the startup form is closed, regardless of any non-MDI forms in the
application. In an MDI application, the menus for each child are displayed on the
MDI form rather than on the child forms themselves. If there are no child forms
visible or if the child with the focus does not have a menu the MDI form’s menu is
displayed. It is common for MDI applications to use several sets of menus. When
the user opens a document the application displays the menu associated with that
type of document. Usually, a different menu is displayed when no child forms are
visible. For example, when there are no files open Microsoft Excel displays only
the File and Help menus. When the user opens a file other menus are displayed,
such as File, Edit, View, Insert, Format, Tools, Data and Window.

Using MDI Forms

NOTES

Self-Instructional
Material 223

Creating Menus for MDI Applications

You can create menus for your Visual Basic application by adding menu controls
to the MDI form and to the child forms. One way to manage the menus in your
MDI application is to place the menu controls you want displayed all of the time,
even when no child forms are visible, on the MDI form. When you run the
application, the MDI form’s menu is automatically displayed when there are no
child forms visible, as shown in the following screen and the MDI form menu is
displayed when no child forms are loaded.

Place the menu controls that apply to a child form on the child form. At run
time, as long as there is at least one child form visible these menu titles are displayed
in the menu bar of the MDI form. Some applications support more than one type
of documents. For example, in Microsoft Access, you can open tables, queries,
forms and other document types. To create an application in Visual Basic you
need to use two child forms. Design one child with menus that perform spreadsheet
tasks and the other with menus that perform charting tasks.

Creating a Window Menu: Most MDI applications, for example,
Microsoft Word for Windows and Microsoft Excel utilizes Window menu. This is
a special menu that displays the captions of all open child forms, as shown in the
following screen and some applications place commands on this menu that
manipulates the child Windows by various arrangements, such as Cascade, Tile
and Arrange Icons.

Using MDI Forms

NOTES

Self-Instructional
224 Material

The Window menu displays the name of each open child form and any
menu control on an MDI form or MDI child form can be used to display the list of
open child forms by setting the WindowList property for that menu control to
True. At run time, Visual Basic automatically manages and displays the list of
captions and displays a check mark next to the one that had the focus most recently.
In addition, a separator bar is automatically placed above the list of Windows.

To Set the WindowList Property: The following steps are required to set
the WindowList property:

 Select the form where you want the menu to appear and from the Tools
menu, choose Menu Editor. The WindowList property applies only to
MDI forms and MDI child forms.

 In the Menu Editor List box select the menu where you want the list of
open child forms to display.

 Select the WindowList check box.

At run time, this menu displays the list of open child forms. In addition, the
WindowList property for this menu control returns as True.

Built-in Capabilities of MDI, Parent and Child Menus

MDI is a popular interface because it allows you to have multiple documents (or
forms) open in one application and hence considered as built-in interface. Each
application consists of one (or more) parent Windows, each containing an MDI
client area. It is the area where the child forms (or documents) will be displayed.
Code you write displays as many instances of each of the child forms that you
want displayed and each child form can only be displayed within the confines of
the parent Window, i.e., you cannot drag the child forms outside the MDI container.
Following screen shows a basic MDI application in use. For example, Main Form
tab as shown in the following screen contains Product Information 1 tab which has
four fields, such as Product ID, Product Name, Unit Price and
Units In Stock. The user can enter valid data using the text bars which are
assigned for the fields.

Using MDI Forms

NOTES

Self-Instructional
Material 225

You need to use MDI to open multiple Windows and all child Windows are
contained within the parent area. To create an MDI parent form, you can simply
take one of your existing forms and set its IsMDIContainer property to
True. This form will now be able to contain other forms as child forms. You may
have one or many container forms within your application. You may have as many
different child forms, the forms that remain contained within the parent form as you
want in your project. A child form is nothing more than a regular form for which
you dynamically set the MdiParent property to refer to the MDI container
form. To create child menu in Visual Basic 6, the following steps are to be performed:

 Continue the MDI Form project, in the Project Window, double click
the MDI Form1 to put the MDI Form in front

 In the Menu of Visual Basic, click ToolsMenu Editor or you can
use CTRL+E. The menu Editor will appear.

 In the Caption, type &File and in the Name: bar type mnuFile
then click Next button.

 In the Caption: bar, type&Exit and in the Name: bar typemnuExit
then click right arrow button. In the shortcut list, choose CTRL+X and
then select Next button.

 In the Caption: bar, type &Window and in the Name: bar type
mnuWindow then click the Window List CheckBox and then the Next
button.

 In the Caption: bar, type &Calendar and in the Name: bar type
mnuCalendar then click right arrow button. In the Shortcut list,
choose CTRL+L then select Next button.

 In the Caption, type &Controller and in the Name: bar type
mnuController then click right arrow button. In the shortcut list,
choose F6 and then select Next button.

 The menu editor will be the same as shown in screen below. After setting
all the above setting select OK button.

Now you have menu in the MDI Form where you need to select FileExit
and select ENTER button. You will get the Menu Editor tab in which all the above
steps are to be performed.

Using MDI Forms

NOTES

Self-Instructional
226 Material

In the mnuExit_Click procedure type the following code:
Private Sub mnuExit_Click()

End

End Sub

In the menu of MDI form, select WindowController and click to write
the following code:

Private Sub mnuController_Click()

If mnuController.Checked = True Then

‘now is checked, make it unchecked

frmController.Hide

mnuController.Checked = False

Else

‘ now is unchecked, make it checked

frmController.Show

mnuController.Checked = True

End If

End Sub

Run the program and look at the Window menu and then select the Exit
menu. Windows applications provide groups of related commands in Menus.
These commands depend on the application but some menus, such as Open and
Save are frequently found in the applications. Menus are considered as intrinsic

Using MDI Forms

NOTES

Self-Instructional
Material 227

controls. On the other hand, menus behave differently from other controls. You
can design them in the Menu Editor Window. You invoke this tool from the Menu
Editor Button on the standard toolbar. Visual Basic provides an easy way to create
menus with the modal Menu Editor dialog. The below dialog is displayed when
the Menu Editor is selected in the Tool Menu. The Menu Editor command is
grayed unless the form is visible. And also you can display the Menu Editor Window
by right clicking on the Form and selecting Menu Editor. You enter the item’s
Caption and Name, set other properties and press ENTER to move to the next
item. When you want to create a submenu, you press the Right Arrow button
(ALT+R). When you want to return to work on top-level menus those items that
appear in the menu bar you need to click the Left Arrow button (ALT+L) when
the application runs. You can move items up and down in the hierarchy by clicking
the corresponding buttons or the hot keys ALT+U and ALT+B, respectively. You
can create up to five levels of submenus in Visual Basic. You can insert a separator
bar using the hypen (-) character for the Caption property. If you forget to enter a
menu item’s Name, the Menu Editor complains when you decide to close it. The
convention used in this book is that all menu names begin with the three letters
mnu.

11.2.1 Accessing Child Forms

A child form is an ordinary form that has itsMDIChild property set toTrue.
Your application can include many MDI child forms of similar or different types.
At run time child forms are displayed within the workspace of the MDI parent
form which refers to the area inside the form’s borders and below the title and
menu bars. MDI applications use multiple child forms within parent Window. These
applications let a user to work on various sets of data. Project in Visual Basic can
have any number of child forms contained in an MDI form. The child form becomes
a child of MDI form in the Visual Basic project. The program code is responsible
for loading the child forms at runtime. At design time, these children forms act as
standard forms. Child forms used in MDI application have following characteristics:

 All child forms are restricted to MDI parent’s form and reside in the client
(internal) area.

 A minimized child form’s icon always appears on user’s desktop. It not
only minimizes the parent Window but also all the children Window. A
maximized child form’s caption is declared in MDI form but it appears on
MDI form’s title bar.
To access the child form within MDI form you need to write the following

code:
Me.ActiveMdiCHild.TextBox1.Text

In the above declaration,Me keyword refers to MDI parent form because
the code resides under it.

Using MDI Forms

NOTES

Self-Instructional
228 Material

11.2.2 Adding, Loading and Unloading Forms

Visual Basic projects have a special object that can be automatically loaded when
the program is run. This object is referred to as the Startup object. The Startup
object varies on the type of project you are creating. A form can be selected with
the help of Sub Main procedure. When a form is specified as the Startup
object the form automatically loads into memory when the application starts. No
other form loads unless it is referenced in program code or is explicitly loaded into
memory. Use theLoad statement to load a form into memory. TheLoad statement
will take only one argument which is the name of the object to be loaded. The
declaration in Visual Basic is done in the following way:

Load Form1

Load frmTest

The Load statement in both cases accepts a valid object name. This
causes the object to load into memory. Although the object loads into memory it
does not mean that the object will be visible to the user. This enables the programmer
to load multiple forms that may be required to prepare them with information
before display. Once loaded into memory, the form’s controls and any program
code can be used. When working with forms in Visual Basic it is important to note
that any reference to an object will cause that object to load. TheLoad statement
does not have to be explicitly used before an object can be used. An example of
this would be if a form’sCaption property is set as follows:

Form1.Caption = “My Notepad”

There is no Load statement before the Caption property is set. This
code directly sets the form’s property. This single line of code automatically causes
the Form1 object to be loaded into memory. This is often referred to as implicit

Using MDI Forms

NOTES

Self-Instructional
Material 229

loading. Implied loading can often cause problems when working on a multiform
project. The programmer does not notice that one form calls or sets information
on another form. The form then automatically loads. Later when you attempt to
unload by name all forms that you remember using, your project continues to run.
TheEnd statement can be used to force the application to terminate regardless of
which forms were explicitly or implicitly loaded. However, theEnd statement
will have an undesirable effect because it will end the application so abruptly that
the QueryUnload and Unload events of forms will not have a chance to
run. When an individual form is no longer required and you can unload it from
memory. This will release the graphic components from the memory. The following
code unloads two forms:

Unload Form1

Unload frmTest

The Unload statement accepts a valid object name. This causes the
design time graphic components of a form to be released. Statements, such as
Load andUnload are used to control the memory status of a form. These two
statements always appear before the name of the object to be affected. They are
often confused with the Show and Hide methods that take place after the object
name. Show and Hide are used to control whether a form is visible to the user.
The control menu contains the following commands:

 Restore: It restores a maximized Form to the size it was before it was
maximized; available only if the Form has been maximized.

 Move: It lets the user moves the Form around with the mouse.

 Size: It lets the user resize the control with the mouse.

 Minimize: It minimizes the Form.

 Maximize: It maximizes the Form.

 Close: It closes the Form.

Check Your Progress

1. What is the main application of Multiple Document Interface (MDI)?

2. In what ways does an MDI form differ from an ordinary form?

3. State the steps to create MDI form and its child forms.

4. Write the property for WindowList.

5. Give the definition of child form.

6. Write the of characteristics MDI child forms.

7. Give the example how form's caption property is set?

8. Explain the term restore.

Using MDI Forms

NOTES

Self-Instructional
230 Material

11.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. MDI is designed to exchange information between documents.

2. An MDI form is similar to an ordinary form except that you cannot place a
control directly on a MDI form unless that control has anAlign property,
such as a picture box control or has no visible interface, such as a timer
control.

3. The following steps are required to create an MDI form and its child forms:

 Create an MDI form. From the Project menu, choose Add MDI Form.
An application can have only one MDI form. If a project already has an
MDI form the ‘Add MDI Form’ command on the Project menu is
unavailable.

 Create the application’s child forms.
4. To Set the WindowList Property: The following steps are required to set

the WindowList property:

 Select the form where you want the menu to appear and from the Tools
menu, choose Menu Editor. TheWindowList property applies only
to MDI forms and MDI child forms.

 In the Menu Editor List box select the menu where you want the list of
open child forms to display.

 Select the WindowList check box.

5. A child form is an ordinary form that has its MDIChild property set to
True.

6. Child forms used in MDI application have following characteristics:

 All child forms are restricted to MDI parent’s form and reside in the
client (internal) area.

 A minimized child form’s icon always appears on user’s desktop. It not
only minimizes the parent Window but also all the children Window. A
maximized child form’s caption is declared in MDI form but it appears
on MDI form’s title bar.

7. An example of this would be if a form’s Caption property is set as
follows:
Form1.Caption = “My Notepad”

8. Restore: It restores a maximized Form to the size it was before it was
maximized; available only if the Form has been maximized.

Using MDI Forms

NOTES

Self-Instructional
Material 231

11.4 SUMMERY

 In Visual Basic, a document centred application is created with the help of
two forms. These two forms refer to Multiple Document Interface (MDI)
Form and a child form.

 The designed MDI application provides all features which are available in
Notepad application in Microsoft Windows.

 MDI is designed to exchange information between documents. With the
main application you can maintain multiple open windows but not multiple
copies of the application.

 MDI applications use multiple child forms within parent window. These
applications let a user to work on various sets of data.

 Dragging information between child windows use a Windows menu through
which you can extract information between various windows.

 MDI allows you to create an application that maintains multiple forms within
a single container form. Applications, such as Microsoft Excel and Microsoft
Word for Windows have multiple document interfaces.

 An MDI application allows the user to display multiple documents at the
same time with each document displayed in its own window. Documents or
child windows are contained in a parent window which provides a
workspace for all the child windows in the application.

 The application can also include standard, non-MDI forms that are not
contained in the MDI form.

 An MDI form is similar to an ordinary form except that you cannot place a
control directly on a MDI form unless that control has anAlign property,
such as a picture box control or has no visible interface.

 Create an MDI form. From the Project menu, choose Add MDI Form. An
application can have only one MDI form. If a project already has an MDI
form the ‘Add MDI Form’ command on the Project menu is unavailable.

 You can create menus for your Visual Basic application by adding menu
controls to the MDI form and to the child forms.

 One way to manage the menus in your MDI application is to place the
menu controls you want displayed all of the time, even when no child forms
are visible, on the MDI form.

 When you run the application, the MDI form’s menu is automatically
displayed when there are no child forms visible, as shown in the following
screen and the MDI form menu is displayed when no child forms are loaded.

 Place the menu controls that apply to a child form on the child form.

Using MDI Forms

NOTES

Self-Instructional
232 Material

 At run time, as long as there is at least one child form visible these menu
titles are displayed in the menu bar of the MDI form.

 Most MDI applications, for example, Microsoft Word for Windows and
Microsoft Excel utilizes Window menu.

 The Window menu displays the name of each open child form and any
menu control on an MDI form or MDI child form can be used to display
the list of open child forms by setting the WindowList property for that
menu control to True.

 At run time, Visual Basic automatically manages and displays the list of
captions and displays a check mark next to the one that had the focus most
recently. In addition, a separator bar is automatically placed above the list
of Windows.

 Select the form where you want the menu to appear and from the Tools
menu, choose Menu Editor. TheWindowList property applies only to MDI
forms and MDI child forms.

 In the Menu Editor ListBox select the menu where you want the list of open
child forms to display.

 MDI is a popular interface because it allows you to have multiple documents
(or forms) open in one application and hence considered as built-in interface.

 Each application consists of one (or more) parent Windows, each containing
an MDI client area. It is the area where the child forms (or documents) will
be displayed.

 Code you write displays as many instances of each of the child forms that
you want displayed and each child form can only be displayed within the
confines of the parent Window, i.e., you cannot drag the child forms outside
the MDI container.

 You need to use MDI to open multiple Windows and all child Windows are
contained within the parent area.

 To create an MDI parent form, you can simply take one of your existing
forms and set its IsMDIContainer property to True. This form will now be
able to contain other forms as child forms.

 You may have one or many container forms within your application. You
may have as many different child forms, the forms that remain contained
within the parent form as you want in your project.

 A child form is nothing more than a regular form for which you dynamically
set the MdiParent property to refer to the MDI container form.

 Windows applications provide groups of related commands in Menus. These
commands depend on the application but some menus, such as Open and
save are frequently found in the applications.

Using MDI Forms

NOTES

Self-Instructional
Material 233

 Menus are considered as intrinsic controls. On the other hand, menus behave
differently from other controls.

 You can design them in the Menu Editor Window. You invoke this tool from
the Menu Editor Button on the standard toolbar. Visual Basic provides an
easy way to create menus with the modal Menu Editor dialog.

 A child form is an ordinary form that has its MDIChild property set toTrue.

 Your application can include many MDI child forms of similar or different
types. At run time child forms are displayed within the workspace of the
MDI parent form which refers to the area inside the form’s borders and
below the title and menu bars.

 Which refers to the area inside the form’s borders and below the title and
menu bars. MDI applications use multiple child forms within parent Window.
These applications let a user to work on various sets of data. Project in
Visual Basic can have any number of child forms contained in an MDI form.

 The child form becomes a child of MDI form in the Visual Basic project.
The program code is responsible for loading the child forms at runtime. At
design time, these children forms act as standard forms.

 Visual Basic projects have a special object that can be automatically loaded
when the program is run.

 This object is referred to as the Startup object. The Startup object varies
on the type of project you are creating.

 A form can be selected with the help of Sub Main procedure. When a form
is specified as the Startup object the form automatically loads into memory
when the application starts.

 No other form loads unless it is referenced in program code or is explicitly
loaded into memory.

 The Load statement in both cases accepts a valid object name. This causes
the object to load into memory.

 This enables the programmer to load multiple forms that may be required to
prepare them with information before display. Once loaded into memory,
the form’s controls and any program code can be used.

 When working with forms in Visual Basic it is important to note that any
reference to an object will cause that object to load. The Load statement
does not have to be explicitly used before an object can be used.

 There is no Load statement before the Caption property is set. This code
directly sets the form’s property.

 This single line of code automatically causes the Form1 object to be loaded
into memory. This is often referred to as implicit loading. Implied loading
can often cause problems when working on a multiform project.

Using MDI Forms

NOTES

Self-Instructional
234 Material

 The programmer does not notice that one form calls or sets information on
another form. The form then automatically loads. Later when you attempt
to unload by name all forms that you remember using, your project continues
to run.

 TheEndstatement can be used to force the application to terminate regardless
of which forms were explicitly or implicitly loaded.

 The Unload statement accepts a valid object name. This causes the design
time graphic components of a form to be released.

 Statements, such as Load and Unload are used to control the memory
status of a form.

 These two statements always appear before the name of the object to be
affected. They are often confused with the Show and Hide methods that
take place after the object name. Show and Hide are used to control whether
a form is visible to the user.

11.5 KEY WORDS

 Application: A collection of objects that work together to accomplish
something useful. In VB, the application is called Project.

 Forms: form is used in VB.NET to create a form-based or window-based
application. Using the form, we can build an attractive user interface. It is
like a container for holding different control that allows the user to interact
with an application.

 Multiple Document Interface (MDI): MDI allow users to work with
multiple documents by opening more than one document at a time.

 Menu window: Menu is a Pull-Down or Pop-Up list of commands. In the
following illustration, the window has a menu bar with two menus: File and
Edit. Each menu can have zero or more menu-items. For the File menu,
there are 6 menu items. The horizontal line is a special type of menu-item
called a separator.

 Child form:A child form is an ordinary form that has its MDI Child property
set to true.

11.6 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Give the definition of MDI application.

2. List the steps to create an MDI form.

Using MDI Forms

NOTES

Self-Instructional
Material 235

3. State the steps for setting the WindowList property.

4. Define about on accessing a child form.

5. Write the syntax to access the child form.

6. Explain about the load forms.

Long-Answer Questions

1. Explain the various built-in capabilities of Multiple Document Interface (MDI)
giving appropriate example.

2. Describe the method of accessing child forms with the appropriate example.

3. Briefly discuss about the MDI parent and child forms.

4. Discuss about the procedure to load and unload forms with the help of
code.

5. Elaborate on the control menu commands.

6. Briefly discusses about the MDI forms along with their properties used in
Visual Basic.

7. Write the VB code to resize MDI Child forms.

11.7 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Using MDI Forms

NOTES

Self-Instructional
236 Material

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
Material 237

BLOCK IV
DATA ACCESS OBJECT (DAO)

AND PROPERTIES

UNIT 12 DATA ACCESS OBJECT
(DAO) AND PROPERTIES

12.0 Introduction
12.1 Objectives
12.2 Data Access Object (DAO)
12.3 Accessing Data Through Transaction Method
12.4 Answers to Check Your Progress Questions
12.5 Summary
12.6 Key Words
12.7 Self-Assessment Questions and Exercises
12.8 Further Readings

12.0 INTRODUCTION

Data Access Objects (DAO) enable you to manipulate the structure of the
DataBase and the data it contains from Visual Basic. In dataBase DAO Object
correspond to objects, for example, a TableDef object corresponds to a
Microsoft Access table. A Field object corresponds to a field in a table.

Most of the properties can set for DAO objects are DAO properties. These
properties are defined by the Microsoft Access DataBase engine and are set the
same way in any application that includes the Access DataBase engine. Some
properties set for DAO objects are defined by Microsoft Access, and are not
automatically recognized by the Access DataBase engine. To set a property that’s
defined by the Access DataBase engine, refer to the object in the DAO hierarchy.
The easiest and fastest way to do this is to create object variables that represent
the different objects you need to work with, and refer to the object variables in
subsequent steps in your code.

This is an object model that has a collection of objects using. This model
gives complete control on the DataBase. This model uses Jet Engine, which is the
native DataBase engine used by Visual Basic and MS-Access. This was the first
model to be used in Visual Basic. Though it is possible to access any DataBase
using this, it is particularly suitable for MS-Access DataBase and not suitable for
ODBC data sources such as Oracle and MicroSoft Structure Query Language
(MS-SQL) Server. So, Microsoft later introduced Remote Data Object (RDO).

DAO 12.0 is the latest version, shipped with Access 2007, and is the version
used by the new ACCDB file format. This new release was written for use with

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
238 Material

the Access DataBase engine, which is an updated version of the Microsoft Jet
DataBase engine and is 100% compatible with Jet. The new features added to
DAO and the Access DataBase engine include new objects and properties that
support multi-value lookup fields, a new Attachment data type, append-only memo
fields, and DataBase encryption using the DataBase password.

DAO has evolved right alongside Jet and the Access DataBase engine, and
has become the best model for accessing and manipulating Access DataBase
engine objects and structure. Because of its tight integration with Access, DAO
also provides much faster access to Access DataBases than does ADO or the Jet
Replication Objects (JRO).

In this unit, you will study about the Data Access Object (DAO), Move
First, MoveLast, MovePrevious, Move Next method, accessing data through
Microsoft Access files.

12.1 OBJECTIVES

After going through this unit, you will be able to:

 Know about the Data Access Objects (DAO)

 Understand about the RecordSet

 Access a RecordSet

 Define data access technology in Visual Basic (VB)

 Connect to data source, retrieve data from a data source

 Access ADO Data Control with the help of transaction methods

12.2 DATA ACCESS OBJECT (DAO)

When Visual Basic first started working with DataBases, it used the Microsoft Jet
DataBase engine, which is what Microsoft Access uses. Using the Jet engine
represented a considerable advance for Visual Basic, because you could now
work with all kinds of data formats in the fields of a DataBase: text, numbers,
integers, longs, singles, doubles, dates, binary values, Object Linking And
Embedding (OLE) objects, currency values, Boolean values and even memo
objects (up to 1.2GB of text). The Jet engine also supported Structured Query
Language (SQL) which DataBase programmers found attractive.

To support the Jet DataBase engine, Microsoft added data control to Visual
Basic, and you can use that control to open Jet DataBase (.mdb) files. Microsoft
also added the following set of Data Access Objects (DAO) to Visual Basic:

DBEngine — The Jet DataBase engine.
Workspace — An area can hold one or more DataBases.
Database — A collection of tables.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
Material 239

TableDef — The definition of a table.
QueryDef — The definition of a query.
RecordSet — The set of records that makes up the result of a query.
Field — A column in a table.
Index — An ordered list of records.
Relation— Stored information about the specific relationship between tables.
For opening a DataBase in DAO, just open a Database object or form a

new one. This object can represent an ISAM DataBase (for example, Paradox),
a Microsoft Jet DataBase (.mdb) file or an ODBC DataBase connected through
the Microsoft Jet DataBase engine. When the Database object is available, you
create a RecordSet object and use that object’s methods, like MoveFirst and
MoveNext, to work with the DataBase.

DAO also supports a client-server connection mode referred to as
ODBCDirect. A connection is directly established to an ODBC data source
by ODBCDirect without loading the Microsoft Jet DataBase engine into memory.
It is a good solution when you need ODBC features in your program.

In theODBCDirect object model, the Connection object has information
server name, and so on. It is like a Database object; in fact, a Connection object
and a Database object represents different references to the same object.

Using DAO Data Control

In order to access a DataBase, you need to first draw Data Control on your form
the way you draw other controls. That is, first click at Data Control on the ToolBox
and then drag it on your form. After placing a data control on your form, you can
set its properties, just like any other control. You can also set them from code at
runtime. Some important properties of the Data control are shown in Table 12.1.

Table 12.1 Properties of Data Control

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
240 Material

Another important property is Connect which indicates the source of an
open DataBase. This property is not used if you are accessing an MS Access
DataBase. Visual Basic incorporates the same DataBase engine (Microsoft Jet
Database Engine) that powers Microsoft Access. This enables Visual Basic to
access DataBase in a number of standard formats in a relatively simple manner.
Database formats supported by VB are:

 Microsoft Access

 Paradox

 dBase

 Btrieve

 FoxPro

In the following examples, we shall learn to use Data control of VB for
accessing an MS Access 2003.

Before we actually connect to a DataBase and retrieve its records, some
important concepts and term must be talked about.

The RecordSet

RecordSet refers to the set of records (or simply a table) that are retrieved
from an object as determined byRecordSource property.

The RecordSet object can be of five types. Out of these five, only the
first three are available to a data control at design time by default.

i. Table Type RecordSet: It represents the base table (i.e. underlying
table) in a code form. It can be used for adding, changing or deleting
records from a single DataBase table.

ii. Dynaset Type RecordSet: It signifies the result of a query that can
have records that are updatable. The dynaset type RecordSet
object is a dynamic set of records that can be used for adding, changing
or deleting records from an underlying DataBase table or tables. A
dynaset type

RecordSet object can have fields from one or more tables in a
DataBase.

This type correspondence to an ODBC keyset cursor.

iii. Snapshots Type RecordSet: It is a fixed copy of a set of records
that can be used for finding data or generating reports. A snapshot
type

RecordSet object can have fields from one or more tables in a
DataBase but it cannot be updated. This type correspondence to an
ODBC static cursor.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
Material 241

iv. Forward only Type RecordSet: ThisRecordSet is the same to
that of snapshot except that there is no cursor. You can only move
forward through records.

v. Dynamic Type RecordSet: It represents a result of a query set from
one or more tables in which can added, changed or deleted records
from a row returning query.

The Bound Control [Supported by DAO]

A bound control (also called data aware control) is a control that can provide
access to a specific column or columns in a data source through a Data Control. A
data aware control can be bound to a Data Control through its DataSource and
DataField properties.

The easiest way of viewing the data is by using one or more of the following
bound controls:

 CheckBox

 Image

 Label

 PictureBox

 TextBox

Steps for Creating a Data Aware Application (using DAO Control)

1. Draw a Data control on your form.

2. Set the DatabaseName property to the path and filename of your DataBase.

3. Set the RecordSource property to the name of the DataBase table you
wish to access.

4. Draw one TextBox on your form for each field you want to access.

5. After this, for each TextBox:

 Set its Datasource property to the name of the data control.

 Set its Datafield property to the name of the field you want that TextBox
to access.

6. Run the program.

Accessing Data through RecordSet Object

The RecordSet is a table created by the data control, based on the contents of its
RecordSource property. Depending on the RecordSource property, this table
may be:

 One of the tables from the DataBase.

 Asubset of records from such a table.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
242 Material

 A subset of the fields from such a table.

 A join of two or more tables from the DataBase.

 Anything that can be returned by an SQL query.

Just like other tables in a relational DataBase, each row of theRecordSet
is referred to as a record, and each column is referred to as field. The
RecordSet can be referred to in your code as property (available at runtime
only) of the data control as follows:

Data1.RecordSet ‘data is the name of DAO data control’
However, RecordSet is generally referred to along with any of its

properties, such as

Data1.RecordSet.BOF ‘accessing BOF property of RecordSet’
Or for applying one of its methods, such as

Data1.recordSet.MoveFirst

Moving Through the Recordset

Recordset allows you to move or to navigate records. The move method of
recordset is used to do so. When one uses the ADODC or data control, these
commands are issued automatically when one of the navigation buttons on the
ADODC or data control is clicked by the end user. With the active data object
application, one has to handle functions or record navigation.

There are five move methods that could be used for record navigation.
These five methods are as follows:

1. MoveFirst method

2. MoveLast method

3. MovePrevious method

4. MoveNext method

5. Move method

1. The MoveFirst Method: The MoveFirst method moves or
positions the record pointer at the first record of the recordset. In your
Form, write the following code on the command buttonCmdmovefirst:
‘ Move to the first record

Private Sub Cmdmovefirst_Click ()

rs.MoveFirst

Call Display

End Sub

2. TheMoveLast Method: TheMoveLast method moves or positions
the record pointer at the last record of the recordset. In your Form, write
the following code on the command buttonCmdmovelast:

‘ Move to the last record

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
Material 243

Private Sub Cmdmovelast_Click ()

rs.MoveLast

Call Display

End Sub

In the above code, rs.MoveLast would move the pointer to the first
record and Call Display would associate the record to the
corresponding fields.

3. TheMovePrevious Method: TheMovePrevious mentod moves
the record printer at the previous record to the current record of the
recordset. In your Form, write the following code on the command
button Cmdmoveprevious:
‘ Move to the pervious record

Private Sub Cmdmoveprevious_Click ()

rs.MovePrevious

If rs.BOF = True Then

rs.MoveFirst

End If

Call Display

End Sub

In the above code, rs.MovePrevious would move the pointer to
the previous record andCall Display would associate the record to
the corresponding fields. Thers.BOF would check if the pointer is at the
Beginning of File (BOF) it would move the pointer to the first record.

4. The MoveNext Method: The MoveNext method moves the record
printer at the next record to the current record of the recordset. In
your Form, write the following code on the command button
Cmdmovenext:
‘ Move to the next record

Private Sub Cmdmovenext_Click ()

rs.MoveNext

If rs.EOF = True Then

rs.MoveLast

End If

Call Display

End Sub

In the above code rs.MoveNext would move the pointer to the next
record and Call Display would associate the record to the corresponding
fields. Thers.EOF would check if the pointer is at the End of File (EOF)
it would move the pointer to the last record.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
244 Material

5. The Move Method: TheMove method enables you to specify a number
of records forward or backward of the current position that you want to
move in your recordset.

Editing and Adding Records

The main objective to use DataBase through the VB application is to update, add
or delete any record.

To edit or add a record, you need to perform the following tasks :

 Prepare the recordset to receive data changes.

 Post the new values of the fields in the recordset.

 Post the changes to the records in the DataBase.

Write the following code to add a new record:
‘ add a new record

Private Sub cmdnew_Click ()

rs!p_code = txtpid.Text

rs!p_name = txtpname.Text

rs!Qty_On_Hand = Val (txtqoh.Text)

rs!Unit_Price = Val (txtppu.Text)

rs.Update

End Sub

Write the following code to edit a record:

‘edit record

Private Sub cmdedit_Click ()

rs!p_code = txtpid.Text

rs!p_name = txtpname.Text

rs!Qty_On_Hand = Val (txtqoh.Text)

rs!Unit_Price = Val (txtppu.Text)

rs.Update

End Sub

To delete a record, you must use the delete method of recordset.

Write the follwiong code to delete a record:
‘ delete a record

Private Sub cmddelete_Click ()

rs.Delete

End Sub

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
Material 245

12.3 ACCESSING DATA THROUGH TRANSACTION
METHOD

If your application has transactions that update more than one table, then it is a
good idea to use the ‘Transaction’ method. This is to ensure that the related
operations that depend on each other, either all occurred successfully or all were
cancelled.

There are three types of transaction methods:

 BeginTrans: To be invoked when you start working on a recordset.
This method begins a new transaction. Once the BeginTrans method
has been invoked, the OLE DB provider will not continuously commit
the changes made to a data source unless you call CommitTrans to
commit the changes or RollbackTrans to reverse the changes and end
the transaction.

 CommitTrans: To be invoked when you want to commit the changes
to a data source. CommitTrans saves any changes made to a recordset
and ends the current transaction.

 RollbackTrans: This method is to be invoked to cancel any changes
made within the current transaction. This method also ends the current
transaction.

The CommitTrans and the RollbackTrans may also start a new transaction.

The following code will show you how to use the transaction methods.

Add a Module to your project.

Declare the variables as follows:

Public adcon As New ADODB.Connection

Public rs As New ADODB.Recordset

In the Form_Load event add the following code:

Private Sub Form_Load ()

‘Set the DSN for the Connection object

adcon.ConnectionString = “DSN=Invoice”

‘Open the connection

adcon.Open

‘Indicate the beginning of the transaction

adcon.BeginTrans

‘Set the properties for the Recordset object

Set rs = New ADODB.Recordset

rs.LockType = adLockPessimistic

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
246 Material

‘Create the Recordset

rs.Open “Customer”, adcon,,, adCmdTable

rs. MoveFirst

End Sub

In the code Module, create a function to display the current row of the
Recordset.

Sub Showfields ()

Form1.Text1.Text = rs! Customer_Name

Form1.Text2.Text = rs! Customer_City

End Sub

To the Next Record Command button add the following code

rs.MoveNext

If rs.EOF Then rs.MoveFirst

Call Showfields

This code will display the next record every time you click the Next button.

Now let us assume that a user wants to edit the data that is displayed. To
the Edit button add the following code:

rs!Customer_Name = Form1.Text1.Text

rs!Customer_City = Form1.Text2.Text

rs.Update

This segment of code is enough to update the recordset. In case you want
the System to prompt you about the changes made, you can write another
procedure called UpdateRecord. This procedure will have the following code:

If MsgBox(“Save all changes?”, vbYesNo) = vbYes
Then

adcon.CommitTrans

Else

adcon.RollbackTrans

End If

The above code segment will ask for your confirmation before committing
the changes made by you. If you answer Yes, the changes will be committed to the
data source and if you answer No, then the changes will be rolled back.

The following code example changes the job title of all sales representatives
in the Employees table. After the BeginTrans method starts a transaction that
isolates all of the changes made to the Employees table, the CommitTrans method

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
Material 247

saves the changes. Be aware that you can use the Rollback method to undo
changes that you saved with the Update method.

Sub ChangeTitle()

Dim wrkCurrent As DAO.Workspace

Dim dbsNorthwind As DAO.Database

Dim rstEmployee As DAO.Recordset

On Error GoTo ErrorHandler

Set wrkCurrent = DBEngine.Workspaces(0)

Set dbsNorthwind = CurrentDB

SetrstEmployee = bsNorthwind.OpenRecordset
(“Employees”)

wrkCurrent.BeginTrans

Do Until rstEmployee.EOF

If rstEmployee!Title = “Sales Representative”
Then

rstEmployee.Edit

rstEmployee!Title = “Sales Associate”
rstEmployee.Update

End If

rstEmployee.MoveNext

Loop

If MsgBox(“Save all changes?”, vbQuestion +
vbYesNo) = vbYes Then

wrkCurrent.CommitTrans

Else

wrkCurrent.Rollback

End If

rstEmployee.Close

dbsNorthwind.Close

wrkCurrent.Close

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
248 Material

Set rstEmployee = nothing

Set dbsNorthwind = Nothing

Set wrkCurrent = Nothing

Exit Sub

ErrorHandler:

MsgBox “Error #: “ & Err.Number & vbCrLf &
vbCrLf & Err.Description

End Sub

When you use transactions, all DataBases and Recordset objects in the
specified Workspace object are affected; transactions are global to the workspace,
not to a specific DataBase or Recordset. If you perform operations on more
than one DataBase or within a workspace transaction, the Commit and Rollback
methods affect all the objects changed within that workspace during the transaction.

Check Your Progress

1. How many data types are used in the fields of DataBase.

2. Define the term RecordSet.

3. Explain the term of bound control.

4. State about the MoveFirst method.

5. Explain the steps of editing and adding records.

6. What are the types of transaction methods.

12.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Data formats used fields of a DataBase: text, numbers, integers, longs,
singles, doubles, dates, binary values, OLE objects, currency values,
Boolean values and even memo objects (up to 1.2GB of text).

2. RecordSet refers to the set of records (or simply a table) that are retrieved
from an object as determined by RecordSource property.

3. A bound control (also called data aware control) is a control that can provide
access to a specific column or columns in a data source through a Data
Control.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
Material 249

4. TheMoveFirst Method : TheMoveFirst method moves or positions
the record pointer at the first record of the recordset. In your Form, write
the following code on the command buttonCmdmovefirst:
‘ Move to the first record

Private Sub Cmdmovefirst_Click ()

rs.MoveFirst

Call Display

End Sub

5. To edit or to add a record, you need to perform the following steps :

 Prepare the recordset to receive data changes.

 Post the new values of the fields in the recordset.

 Post the changes to the records in the DataBase.

6. There are three types of transaction methods:

i. BeginTrans

ii. CommitTrans

iii. RollbackTrans

12.5 SUMMARY

 When Visual Basic first started working with DataBases, it used the Microsoft
Jet DataBase engine, which is what Microsoft Access uses.

 Using the Jet engine represented a considerable advance for Visual Basic,
because you could now work with all kinds of data formats in the fields of
a DataBase: text, numbers, integers, longs, singles, doubles, dates, binary
values, OLE objects, currency values, Boolean values and even memo
objects.

 The Jet engine also supported SQL which DataBase programmers found
attractive.

 DAO also supports a client-server connection mode referred to as
ODBCDirect.

 A connection is directly established to an ODBC data source by
ODBCDirect without loading the Microsoft Jet DataBase engine into
memory. It is a good solution when you need ODBC features in your
program.

 In order to access a DataBase, you need to first draw Data Control on
your form the way you draw other controls.

 That is, first click at Data Control on the ToolBox and then drag it on your
form.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
250 Material

 Visual Basic incorporates the same DataBase engine (Microsoft Jet Database
Engine) that powers Microsoft Access.

 Table Type RecordSet is represents the base table (i.e. underlying table) in
a code form. It can be used for adding, changing or deleting records from a
single DataBase table.

 Dynaset TypeRecordSet is signifies the result of a query that can have
records that are updatable. The dynaset type RecordSet object is a
dynamic set of records that can be used for adding, changing or deleting
records from an underlying DataBase table or tables.

 Snapshots TypeRecordSet is a fixed copy of a set of records that can
be used for finding data or generating reports. A snapshot typeRecordSet
object can have fields from one or more tables in a DataBase but it cannot
be updated. This type correspondence to an ODBC static cursor.

 This RecordSet is the same to that of snapshot except that there is no
cursor. You can only move forward through records.

 Dynamic Type RecordSet represents a result of a query set from one
or more tables in which can added, changed or deleted records from a row
returning query.

 A bound control (also called data aware control) is a control that can provide
access to a specific column or columns in a data source through a Data
Control.

 The data control maintains a pointer to one record from theRecordSet.

 Recordset allows you to move or to navigate records. The move method of
recordset is used to do so.

 When one uses the ADODC or data control, these commands are issued
automatically when one of the navigation buttons on the ADODC or data
control is clicked by the end user. With the active data object application,
one has to handle functions or record navigation.

 The MoveFirst method moves or positions the record pointer at the
first record of the recordset.

 TheMoveLast method moves or positions the record pointer at the last
record of the recordset.

 TheMovePrevious mentod moves the record printer at the previous
record to the current record of the recordset.

 The MoveNext method moves the record printer at the next record to
the current record of the recordset.

 TheMove method enables you to specify a number of records forward or
backward of the current position that you want to move in your recordset.

 The main objective to use DataBase through the VB application is to update,
add or delete any record.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
Material 251

 If your application has transactions that update more than one table, then it
is a good idea to use the ‘transaction’ method.

 This is to ensure that the related operations that depend on each other,
either all occurred successfully or all were cancelled.

 BeginTrans to be invoked when you start working on a recordset.

 This method begins a new transaction. Once the BeginTrans method has
been invoked, the OLE DB provider will not continuously commit the
changes made to a data source unless you call CommitTrans to commit the
changes or RollbackTrans to reverse the changes and end the transaction.

 CommitTrans to be invoked when you want to commit the changes to a
data source. CommitTrans saves any changes made to a recordset and
ends the current transaction.

 RollbackTrans method is to be invoked to cancel any changes made within
the current transaction. This method also ends the current transaction.

 The CommitTrans and the RollbackTrans may also start a new transaction.

 This segment of code is enough to update the recordset. In case you want
the System to prompt you about the changes made, you can write another
procedure called UpdateRecord.

 The above code segment will ask for your confirmation before committing
the changes made by you. If you answer Yes, the changes will be committed
to the data source and if you answer No, then the changes will be rolled
back.

 After the BeginTrans method starts a transaction that isolates all of the
changes made to the Employees table, the CommitTrans method saves the
changes.

 Be aware that you can use the Rollback method to undo changes that you
saved with the Update method.

 When you use transactions, all DataBases and Recordset objects in the
specified Workspace object are affected; transactions are global to the
workspace, not to a specific DataBase or Recordset.

 If you perform operations on more than one DataBase or within a workspace
transaction, the Commit and Rollback methods affect all the objects changed
within that workspace during the transaction.

12.6 KEY WORDS

 Record: A logical section of a file to hold a related set of data.

 Field: A column in a table.

 Index: An ordered list of records.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
252 Material

 Relation: Stored information about the specific relationship between tables.

 I/O: Stands for Input/Output. Whenever you work with a file you should
have ways of reading data from the file (Input) and ways of writing data to
the file (Output). I/O operations include all the commands that make reading
and writing files possible.

 Database management system: A software system that allows users to
not only define and create a DataBase but also maintain it and control its
access.

 Transaction: An action used to perform some manipulation on data stored
in the DataBase.

 Database schema: The overall description of a DataBase which is specified
during DataBase design and is not expected to be changed frequently.

 Data dictionary: It stores the information about the organization and usage
of data contained in the DataBase.

 Data control: A connection between information and the bound controls
that is used for displaying the information.

 Connect: An important property of DAO control which indicates the source
of an open DataBase.

12.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What are Data Access Objects (DAO)?

2. Which data formats you can use in the DataBase?

3. Define the term RecordSet.

4. Explain the term bound control.

5. Differentiate between MoveFirst and MoveLast method.

6. State about the BeginTrans.

Long-Answer Questions

1. Discuss about the types of Data Access Object (DAO) that are added by
Microsoft to Visual Basic.

2. Explain about the ofRecordSet types that are available for data control
at design time giving appropriate examples?

3. Briefly discuss the five move methods that could be used for record
navigation, Explain with the help of examples.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
Material 253

4. Discuss briefly the methods of moving recordset giving appropriate example.

5. Describe about the editing and adding records method giving examples.

6. Analyse the transaction methods and its types briefly.

7. Design an application that displays the records of Department Table (DEPT)
one-by-one. For each department record, the lower part of the form, i.e.,
the subform, should display all the records in the EMP table that have the
same Deptno as shown below.

12.8 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Data Access Object
(DAO) and Properties

NOTES

Self-Instructional
254 Material

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 255

UNIT 13 ACTIVE DATA OBJECTS
(ADO) AND ADO PRIMER

13.0 Introduction
13.1 Objectives
13.2 Active Data Objects (ADO): An Introduction
13.3 Answers to Check Your Progress Questions
13.4 Summary
13.5 Key Words
13.6 Self-Assessment Questions and Exercises
13.7 Further Readings

13.0 INTRODUCTION

In VB, you can access databases through three different data access mechanisms
or interfaces: Data Access Objects (DAO), Remote Data Objects (RDO) and
Active X Data Objects (ADO). DAO, which was developed before RDO and
ADO, refers to a set of objects that enables client applications to programmatically
access data. ADO is developed as an easy-to-use application level interface to
Microsoft’s latest and most dominant data access paradigm, OLE DB. The function
of Object Linking and Embedding DataBase (OLE DB) is to provide a high-
performance access to any data source, including relational and non-relational
databases, e-mails, text and graphics, custom business objects, and so on. The
concept behind VB ADO was Universal Data Access (UDA), in which one
database access method could be used for any data source. ADO has been
developed to replace both DAO and RDO.

The ActiveX Data Objects (ADO) data control is the principal interface
between a Visual Basic (VB) application and a database. It can be used without
writing any code at all or it can be the main part of a complicated database
management system. This icon may not appear in your VB ToolBox. If it does not,
select Project from the main menu, then click Components. The Components
dialog box window will appear. Select Microsoft ADO Data Control and then
click OK. The control will be added to your toolbox.

In this unit you will study about the ActiveX Data Object (ADO), OLE DB,
and ADO Object Model.

13.1 OBJECTIVES

After going through this unit, you will be able to:

 Access data in VB using ADO

 Describe the technology used for accessing data in VB

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
256 Material

 List the advantages of OLE DB and ADO

 Understand Activex Data Object Model

 Understand the Advantages of ADO model

 Analysis the significance of ADO data control

 Describe the mechanism of locking data to prevent access to it

13.2 ACTIVE DATA OBJECTS (ADO):
AN INTRODUCTION

ActiveX Data Objects or ADO

ActiveX Data Objects (ADO) is the new data access technology offered by
Microsoft. ADO is meant to replace Data Access Objects (DAO), Remote Data
Objects (RDO) and Open Database Connectivity (ODBC). This means that all
new programmers must embrace this new offering from Microsoft. The older
technologies have been moved to the ‘Maintenance’ mode which is a nice way of
saying that these technologies will not see any further development, nor will any of
the reported bugs be fixed.

Why ADO?

Why do we need another data access engine when we already have DAO and
RDO? To answer this question, let us take a look at the DAO’s object model vis-
a-vis the current data access requirements. The DAO with the help of ODBC can
let you connect to Jet, Index Sequential Access Method (ISAM) databases and
other Relational databases.

However, today’s data access requirements are not limited to handling only
relational data. We need to access data from other sources as well, such as mail,
the Internet content, directory data from other machines etc. The technology
required to access information form these different data sources is different.
Therefore, the data access model will have to change to accommodate the new
requirements.

We have a choice. We can access any type of data and store it locally in a
new type of database and tackle the various types of data using its native method
or we can implement the various technologies present in our data access table.
Both these alternatives have their own problems. Ultimately, you are going to
spend a lot more time learning various data access methods than developing
applications.

Moreover, our requirements do not end with merely getting the data from
the source and downloading it on our machine. We would also like to make changes
to the data and update the data source with these changes.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 257

What we need is a simple, consistent Application Programming Interface
(API) that enables applications to gain access and modify a wide variety of data
sources. A data source may be a database, a text file, a spreadsheet, a graphics
application, a cluster of heterogeneous databases or something yet to be invented.

Advantages of Object Linking and Embedding DataBase (OLE DB)
and ActiveX Data Object (ADO)

The following are the advantages of OLE DB and ADO

OLE DB

OLE DB is a set of Component Object Model (COM) interfaces that provide
uniform access to the data stored in diverse information sources. OLE DB is
defined as a new low level interface that is a part of the Universal Data Access
(UDA) platform. It is defined as a general purpose set of interfaces designed to let
developers build data access tools as components using the COM. OLE DB
enables applications to have uniform access to the data stored in DBMS and non
DBMS information containers while continuing to take advantage of the benefits
of database technology without having transferred data from its place of origin to
a DBMS.

This means OLE DB is not restricted to ISAM, Jet or even relational data
sources, but is capable of dealing with any type of data, regardless of its format or
storage method. In practice, this versatility means you can access data that resides
in an Excel spreadsheet, text files or even on a mail server, such as Microsoft
Exchange.

OLE DB has what it called ‘Providers’ which let you access the different
data sources. For different data sources you have different data providers. OLE
DB provides four services that you will be using in your application. They are:

1. OLE DB provides cursor service which is defined as a temporary, read
only table that saves the results of a query with an assigned name. The
cursor is available for browsing, reporting or other uses until it is closed.

2. A service to perform batch updates.

3. A shape service to build the data in the form of a hierarchy.

4. A remote data service provider for managing data in multi-tier
environments over connected or disconnected networks.

Unfortunately, Visual Basic cannot access the OLE DB directly because of
its sophistication. This is where ADO comes into the picture. The ADO acts like
the intermediary between the application and the OLE DB. Now that you understand
why we need ADO, let us see what ADO is all about.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
258 Material

ADO

ADO enables your client applications to access and manipulate data in a database
server through any of the OLE DB providers. According to Microsoft, “ADO’s
primary benefits are ease of use, high speed, low memory overheads and a small
disk footprint. ADO supports key features for building client-server and Web
based applications.”

The ADO features an object model like the DAO and the RDO but it is
much flatter. In the case of the DAO, you had seventeen objects and in the case of
the ADO, you have only seven objects. Besides, you do not have to follow a strict
hierarchy when working with these objects in ADO. For example, unlike in the
case of ADO, in the DAO you cannot create a recordset without using the database
object.

Let us see how the ADO allows you to access data from a database.
Regardless of the data access method, working on the data from a database
involves the following steps:

1. Establishment of a connection to a data source.

2. Extraction of the required data with a suitable command.

3. Having extracted the data and worked on it, we may have to keep the
data source up-to-date.

4. Keep an eye on the errors that may occur and take suitable action.

The ADO programming model illustrated in the following heading allows
you to do all these and more.

The advantages of DAO, RDO and ADO are given below:

DAO RDO ADO

Data Access Objects (DAO)
increases the cohesiveness of
the objects by extracting out
the data access code from
them.

Remote Data Objects (RDO) is
an object-oriented data access
interface to ODBC combined
with the easy-to-use style of Data

Access Objects (DAO).

One key advantage of ADO is
its universality. ADO can be
used with both relational and
non relational databases, as
well as file systems, text, and
other sources.

DAO reduces network
overhead by caching queries
results.

RDO also handles all types of
result sets including those
generated by multiple result
set procedures, those returning
output arguments and those
requiring complex input
parameters.

The primary benefits of ADO
are ease of use, high speed,
low memory overhead and a
small disk footprint. ADO
supports key features for
building client/server and Web
based applications.

DAO enhances loose coupling
between the business tier and
the data sources.

RDO can execute ordinary
table-based queries, but it is
especially adept at building
and executing queries against
stored procedures.

ADO is easy to use and it is
language-independent.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 259

The disadvantages of DAO, RDO and ADO are given below:

DAO RDO ADO

DAO requires large volumes
of implementation code to be
written.

RDO does not support Jet or
Indexed Sequential Access

Method (ISAM) databases very
well.

ADO is also the most recent
addition to the data access
options offered by Microsoft.
Its object model is more
compact than those of DAO
and RDO.

The DAO control the data
access in a much stricter way
than with the Data control.

RDO includes complex
cursors including batch.

When ADO first came out,
many developers were
complaining about bugs and
speed. However, ADO is
improving, and with
ADO.NET, developers will
get even more flexibility,
scalability, and options.

The ActiveX Data Object Model

The goal of ADO is to gain access, to edit and up-to-date data sources.

Figure 13.1 shows the ADO programming model.

Fig. 13.1 Displaying ADO Programming Model

The ADO programming model provides classes and objects to perform
each of the following activities:

 Connection: Makes a connection to a data source.

 Command: Creates an object to represent an SQL command.

 Parameter: Specifies columns, tables and values in an SQL command
as variable parameters.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
260 Material

 Recordset: Executes a command and store the result, if the command
is returning row, in a cache. Recordset also allows a user to sort,
view or edit the data and up-to-date the data source.

Apart from these objects, there are other objects that we will discuss shortly.

 Connection: You can access a data source using aConnection
object. A Connection represents an open session or
Connection to a data source. Unless a connection is made, data
cannot be exchanged between the data source and the application. A
Connection object specifies the name of a data source, the provider
that will be used to access the data and other parameters.

Your application can gain access to a data source directly (sometimes
called a two-tier system) or indirectly (sometimes called a three-tier
system) through an intermediary like the Internet Information Server.

After gaining access to a data source, ADO ensures that the updates
made to the data source are made such that there is data consistency
and integrity. A transaction delimits the beginning and the end of a series
of data access operations that transpire across a connection. If you
cancel the transaction or one of its operations fails, ADO ensures that
the changes made are ‘rolled back’ so that the ultimate result will be as
if none of the operations in the transaction had occurred.

 Command: Once a connection has been established with the data
source, the data has to be extracted. This is done by using aCommand
object. ACommand adds, deletes and updates data in the data source
or retrieves data in the form of rows in a table.

 Parameter: A command to retrieve data can be qualified by using
parameters. Parameters are arguments to a command that alter the result
of the execution of the command. For example, you could issue the
same data retrieval command repeatedly, varying your specification of
the information to be retrieved each time.

Parameters are especially useful for executing commands that behave
like functions. In this case, you know what the command does but not
necessarily how it works. For example, you issue a bank transfer
command that debits one account and credit another. You specify the
amount of money to be transferred as a parameter.

 Recordset: Although ADO allows you to access any type of data,
here our discussion is limited to the data from a database. TheCommand
object when executed will return a set of rows from one or more tables.
This set of rows is calledRecordset. This is not different from the
definition of the Recordset in the DAO object model. A
Recordset is placed in local storage.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 261

However, there is no object that represents a single row of a
Recordset.

A Recordset is the primary means of examining and modifying
data in the rows. ARecordset object allows you to:

o Specify rows that are available for examination.

o Traverse the rows.

o Specify the order in which the rows may be traversed.

o Add, change or delete rows.

o Up-to-date the data source with changed rows.

o Manage the overall state of the recordset.

 Field: A row of a Recordset consists of one or more fields. If
you envision aRecordset as a two-dimensional grid, the fields line
up to form columns. Each field (column) has a name, a data type and a
value. It is the value that contains the actual data of a data source. To
change the data of a data source, you have to modify the value of the
field object. In order to make sure that every occurrence of a particular
field in all the tables is modified, you can use the transaction method of
the Connection object.

 Error: Errors can occur at any time in your application due to the data
source being corrupted or renamed by somebody or the Password being
changed or for many other reasons that a programmer can understand.
This results in not being able to establish a connection, execute a
command or perform an operation on an object in a suitable state (for
example, attempting to use a Recordset object that has not been
initialised). This error object behaves like the error object in DAO.

 Property: Each ADO object has a set of unique properties that either
describes or controls the behaviour of that object. There are two types
of properties: built-in and dynamic. Built-in properties are part of the
ADO object and are always available. Dynamic properties are added
to the ADO object’s properties collection by the underlying data provider
and exist only when that provider is being used.

 Collection: Just as in DAO, ADO provides collections, a type of object
that contains other objects of a particular type. The objects in the
collection can be retrieved with a collection method, either by name as
a text string or by ordinal as an integer number. ADO provides four
types of collections:

o AConnection object has the errors collection which contains all
Error objects created in response to a single failure involving the
data source.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
262 Material

o A Command object has the Parameters collection which
contains all Parameter objects that can be applied to that
Command object.

o ARecordSet object has theFields collection which contains
all Field objects that define the columns of that Recordset
object.

o In addition, the Connection, Command, RecordSet and
Field objects all have aProperties collection, which contains
all the Property objects that can be applied to their respective
containing objects.

 Events: This is new in ADO. ADO 2.0 introduces the concept of events
to a programming model. Events are notifications that certain operations
are about to occur or have already occurred. You can use events in
general to efficiently orchestrate an application consisting of several
asynchronous tasks.

If you know that an event is about to occur, for example, a commit or a
delete, you have the opportunity to examine the parameters and take
suitable action. This is just like Windows asking your permission to delete
the files from the Recycle Bin.

The events which inform you about the completion of a particular
operation, allow the application to proceed with the next step. Event
handlers are called after an operation completes to notify you about the
completion of an asynchronous operation. ADO 2.0 introduces several
operations that have been enhanced to optionally execute
asynchronously. For example, an application that starts an asynchronous
Recordset.Open operation is notified by an execution complete
event when the operation concludes.

There are two families of events:

 ConnectionEvents: Events are issued when transactions on a
connection begin, committed or rolled back, when commands execute
and connections start or end.

 RecordsetEvents: Events are issued to report the progress of
data retrieval in the following cases: when you navigate through the rows
of a Recordset object, when you change a field in a row of a
Recordset, when you change a row in a Recordset or make
any change in the entireRecordset.

Accessing ADO Data Control

We can display the data from aRecordset (data source) using ADO code or
with the help of the ADO data control. In order to use the ADO Data, we need to
add the control to the form. The ADO data control works just like the Data

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 263

control that we worked on earlier. However, the Data control cannot work with
ADO, so we need to add the ADO data control.

Right click the Toolbox and from the popup menu select Components.

Figure 13.2 shows the Components dialog box.

Fig. 13.2 Displaying Various VB Control Components

From this dialog box, click Microsoft ADO Data Control 6.0 (OLEDB).
The ADO data control gets added to your Toolbox.

Draw the ADO data control on your form and set the properties. Right
click the ADO Data control and select ADODC Properties from the menu. The
Property Pages dialog box will look like this.

Figure 13.3 shows Property Pages dialog box

Fig. 13.3 Displaying Various ADODC Properties

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
264 Material

The Property Pages of the ADODC allow you to specify a lot more information
than the Data control. In the case of the Data control, you only need to give the
following four details:

 The type of database (Access, dBase, FoxPro...).

 The Name of the database.

 The type of recordset (Table, Dynaset, Snapshot).

 The RecordSource (A Table name, an SQL query...).

However, you may need to do a little more in the case of the ADODC, the Property
Pages of the ADODC contain four tabs. They allow you to set the various properties
of the ADODC. They are:

 General: In this tab, you specify how the ADODC should connect to a
data source. There are three options.

o Use Data Links File: You will need this option if you are going to link
a Textbox or a grid or some such control to an application like MS
Excel or MS Word via DDE.

o Use ODBC Data Source Name: You can mention the name of the
DSN that we created by using the ODBC Data Source Administrator.
The DSNs already created will be displayed in a drop-down ListBox.
You can select the one you need to work with or you can build a new
DSN.

o Use Connection String: You can build the connection string here by
clicking the ‘Build’ button. This will bring up a wizard and guide you
along.

 Authentication:This lets you enter Authentication information like the User
Name and Password.

 RecordSource: Here you can specify the method of creating a
Recordset. That is, you can indicate the Command Type
(adCmdUnknown or adCmdText or adCmdTable or
adCmdStoredProc).

Table or Stored Procedure

If you choose adCmdTable in the Command Type, then in the Table or
Stored Procedure you can select the table name from the database. If you choose
the other options, then you have to enter the Stored Procedure or the SQL
Command Text.

Font and Color

The other two tabs, Font and Color allow you to customise the appearance of the
ADO data control.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 265

Using Bound Controls

Data aware controls can be bound to the ADODC just as with the Data control.
There are two new options that are made available with the ADO in Visual Basic
6.0. You can specify the Data Member and the Data Format along with
the Data Source and the Data Field.

Cursors

Cursor is a set of pointer that points the data. A cursor is like a result set but the
actual data is on the server. You can create a cursor by copying the data from the
server to the client. However, the original data will be on the server only. A cursor
is available for browsing, reporting and other uses until it is closed.

You can use various types of cursors provided by the VB and for each
cursor type a specific constant is defined. The constants are used to invoke and
initialise the various cursor types. Table 13.1 lists the various constants and their
functioning.

Table 13.1 Various Constants and Their Description

Constant Cursor Type Description

adOpenDynamic Invoke and initialise
Dynamic type cursor

Enables you to view all the
data changes, such as addition,
deletion and changes
performed by other users on a
Recordset.

adOpenKeyset Invoke and initialise
Key type cursor

Enables you to view only some
of the data changes on a
Recordset performed by
other users. For example,
keytype cursor enables you to
view the records that other
users add to a Recordset.

adOpenStatic Invoke and initialise
static type cursor

Enables you to view a static
copy of a Recordset. It
means you cannot view any of
the changes performed by
other users on a Recordset.

adOpenForwardOnly Invoke and initialise
static type cursor

Behaves like the static type
cursor except that it enables
you to scroll forward only
through the records in a
Recordset.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
266 Material

Using Cursor

The following sequence of steps implements an example to show how you can use
a cursor type in your program.

1. Open a new VB project.

2. Create four command buttons, two TextBoxes and two labels.

3. Change the caption and name of the four command buttons to First, Next,
Previous and Last, respectively.

4. Delete the Text property of the two TextBoxes.

5. Change the caption of the two labels to Emp_name and Emp_ID as shown
in the following figure.

Figure 13.4 shows Form1 Screen.

6. Now, create a database and create an Employee table in the database.

7. Enter some entries in the database as shown in the following figure.

Figure 13.5 shows database entries.

8. Create the Customer Data Source Name (DSN) that uses Microsoft Access
driver for connecting your application to the MS Access database.

Fig. 13.4 Displaying all the Labels, TextBoxes and Command Buttons

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 267

Fig. 13.5 Displaying all the Database Entries

9. Now, open the Code window and write the following lines of code:
public con As New ADODB.Connection ‘ connection object is

‘declared to create a session with the database

public rs As New ADODB.Recordset

Private Sub First_Click()

rs.MoveFirst ‘ Moves the control to the first record in
the ‘database

Text1.Text = rs!emp_name ‘ print the emp_name value in
the ‘ first text box

Text2.Text = rs!emp_id ‘‘ print the emp_name value in the
‘second text box

End Sub

Private Sub Form_Load()

Dim i As Integer

con.Open (“dsn=customer”)’ Opens connection

rs.Open “select* from Employee”, con, adOpenDynamic,
adLockOptimistic ‘ using adOpenDynamic cursor which enables
‘you to move in any direction in the database.

End Sub

Private Sub Last_Click()

rs.MoveLast ‘ Moves the control to the last record in the
‘database

Text1.Text = rs!emp_name

Text2.Text = rs!emp_id

End Sub

Private Sub Next_Click() ‘ implement to move the control
to ‘the next record in the database.

rs.MoveNext

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
268 Material

If rs.EOF = True Then

rs.MoveLast

End If

Text1.Text = rs!emp_name

Text2.Text = rs!emp_id

End Sub

Private Sub Previous_Click()‘ implement to move the control
to ‘the previous record in the database.

rs.MovePrevious

If rs.BOF = True Then

rs.MoveFirst

End If

Text1.Text = rs!emp_name

Text2.Text = rs!emp_id

End Sub

Figure 13.6 shows the Code window for using cursor

Fig. 13.6 Displaying the Code Window for Using Cursor

10. Add the Microsoft ActiveX Data Objects 2.1 Library reference to the
program.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 269

11. Compile the program. Now you can perform any of the above operations,
such as First and Previous. For example, if you click the First button, then
it will give the first entry data in the database. Figure 13.7 shows the first
entry data in the database.

Fig. 13.7 Displaying the Text Boxes Containing the First Entry Data in the Database

Locking

Locking is a technique that is used in a multiuser database environment to prevent
users from editing one or more records on the database. For example, you are
working in a multiuser database environment and want to edit database records.
While editing the records, you need locking to prevent all the other users on the
database from trying to edit the same record at the same time.

There are four different levels at which you can lock data in a database record.
LockType property is used to control the locking levels and this property
contains the following four values:

 AdLockReadOnly: Sets a record’s data as read only type. Now, the
users can only read the data on the records and cannot perform any change.

 AdLockPessimistic: Locks a record for all the other users when
you are working on that record.

 AdLockOptimistic: Locks a record for all the other users when
you call theUpdate method to modify that record.

 AdLockBatchOptimistic: Updates more than one record at a
time with the UpdateBatch method call. Until you call the
UpdateBatch method, all of your changes are cached locally.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
270 Material

The syntax to define values for theLockType property is:
<Recordset name>. LockType = <Value>

In the above syntax, theRecordset name refers to the name of the database
Recordset. And Value refers to one of the four values, such as
AdLockReadOnly or AdLockPessimistic.

Convert DAO Code to ADO

DAO to ADO Object Map

DAO ADO (ADODB) Note
DBEngine None
Workspace None
Database Connection
Recordset Recordset
Dynaset-
Type

Keyset Retrieves a set of pointers to the
records in the recordset.

Snapshot-
Type

Static Both retrieve full records, but a Static
recordset can be updated.

Table-Type Keyset with
adCmdTableDirect option.

Field Field When referred to in a recordset.

DAO

Open a Recordset
Dim db as Database

 Dim rs as DAO.Recordset

 Set db = CurrentDB()

 Set rs = db.OpenRecordset(“Employees”)

Edit a Recordset
rs.Edit

 rs(“TextFieldName”) = “NewValue”

 rs.Update

ADO

Open a Recordset
Dim rs as New ADODB.Recordset

 rs.Open “Employees”, CurrentProject.Connection, _

 adOpenKeySet, adLockOptimistic

Edit a Recordset
rs(“TextFieldName”) = “NewValue”

 rs.Update

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 271

Check Your Progress

1. What is the full form of ISAM?

2. Why we use API’s in programming?
3. Write one service provided by OLE DB.

4. Explain the term Error for ActiveX Data Object model.

5. State about the Cursors for accessing ADO.

6. List the name of the properter used in locking.

7. Write the syntax to define values for the LockType property.

13.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. RecordSet refers to the set of records (or simply a table) that are retrieved
from an object as determined by RecordSource property.

2. Application Programming Interface (API) that enables applications to gain
access and modify a wide variety of data sources.

3. OLE DB provides cursor service which is defined as a temporary, read
only table that saves the results of a query with an assigned name. The
cursor is available for browsing, reporting or other uses until it is closed.

4. Errors can occur at any time in your application due to the data source
being corrupted or renamed by somebody or the Password being changed
or for many other reasons that a programmer can understand. This results
in not being able to establish a connection, execute a command or perform
an operation on an object in a suitable state (for example, attempting to use
a Recordset object that has not been initialised). This error object
behaves like the error object in DAO.

5. Cursor is a set of pointer that points the data. A cursor is like a result set but
the actual data is on the server. You can create a cursor by copying the data
from the server to the client. However, the original data will be on the server
only. A cursor is available for browsing, reporting and other uses until it is
closed.

6. AdLockReadOnly,

AdLockOptimistic,

AdLockPessimistic,

AdLockBatchOptimistic.

7. The syntax to define values for theLockType property is:
<Recordset name>. LockType = <Value>

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
272 Material

13.4 SUMMARY

 The record being pointed to at any given moment is called the ‘current
record’.

 TheRecordSet object can also be used to modify a database by using
its methods for it, such as AddNew (for adding a record),Update (for
updating a record) and Delete (for deleting a record). Let us learn to
use these methods through RecordSet.

 EOF (End of File) is a Boolean property of theRecordSet object that
turns true when there is an attempt of moving forward passing the last record
in a RecordSet.

 BOF (Beginning of File) is a Boolean property of theRecordSet object
that turns true when there is an attempt of moving backward passing the
first record in a RecordSet.

 In the above example you saw that changes to a record are automatically
updated with the data control when the user moves off that record. This is
called theUpdate method of theRecordSet object of the working
data control.

 You also saw that if the EOFAction of the data control is set to ‘2–
AddNew’, the AddNew method of the RecordSet object will be
invoked by the data control, that causes the clearance of all the bound
controls so that data can be entered by the user.

 TheUpdate andAddNew methods can also be invoked through code
in addition to being automatically invoked through the data control. There is
also a Delete method of the RecordSet object.

 Which can only be invoked through code; it cannot be automatically
accessed through the data control.

 Remote Data Objects (RDO) connect to databases using ODBC. You set
up ODBC connections to databases using the ODBC item in the Windows
Control Panel and then use one of those connections with the RDO.

 ActiveX Data Objects (ADO) is the new data access technology offered
by Microsoft.

 ADO is meant to replace Data Access Objects (DAO), Remote Data
Objects (RDO) and Open Database Connectivity (ODBC).

 This means that all new programmers must embrace this new offering from
Microsoft.

 OLE DB is a set of Component Object Model (COM) interfaces that
provide uniform access to the data stored in diverse information sources.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 273

 OLE DB is defined as a new low level interface that is a part of the Universal
Data Access platform.

 It is defined as a general purpose set of interfaces designed to let developers
build data access tools as components using the COM.

 ADO enables your client applications to access and manipulate data in a
database server through any of the OLE DB providers.

 According to Microsoft, “ADO’s primary benefits are ease of use, high
speed, low memory overheads and a small disk footprint.

 ADO supports key features for building client-server and Web based
applications.”

 The ADO features an object model like the DAO and the RDO but it is
much flatter.

 In the case of the DAO, you had seventeen objects and in the case of the
ADO, you have only seven objects. Besides, you do not have to follow a
strict hierarchy when working with these objects in ADO.

 For example, unlike in the case of ADO, in the DAO you cannot create a
recordset without using the database object.

 Specifies columns, tables and values in an SQL command as variable
parameters.

 Executes a command and store the result, if the command is returning row,
in a cache.Recordset also allows a user to sort, view or edit the data
and up-to-date the data source.

 You can access a data source using a Connection object. A
Connection represents an open session or Connection to a
data source.

 AConnection object specifies the name of a data source, the provider
that will be used to access the data and other parameters.

 Your application can gain access to a data source directly (sometimes called
a two-tier system) or indirectly (sometimes called a three-tier system) through
an intermediary like the Internet Information Server.

 Once a connection has been established with the data source, the data has
to be extracted.

 This is done by using a Command object. ACommand adds, deletes
and updates data in the data source or retrieves data in the form of rows in
a table.

 A command to retrieve data can be qualified by using parameters. Parameters
are arguments to a command that alter the result of the execution of the
command.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
274 Material

 Although ADO allows you to access any type of data, here our discussion
is limited to the data from a database. TheCommand object when executed
will return a set of rows from one or more tables. This set of rows is called
Recordset.

 A row of aRecordset consists of one or more fields. If you envision a
Recordset as a two-dimensional grid, the fields line up to form columns.

 Errors can occur at any time in your application due to the data source
being corrupted or renamed by somebody or the Password being changed
or for many other reasons that a programmer can understand.

 Each ADO object has a set of unique properties that either describes or
controls the behaviour of that object. There are two types of properties:
built-in and dynamic.

 Just as in DAO, ADO provides collections, a type of object that contains
other objects of a particular type.

 This is new in ADO. ADO 2.0 introduces the concept of events to a
programming model. Events are notifications that certain operations are
about to occur or have already occurred.

 Events are issued when transactions on a connection begin, committed or
rolled back, when commands execute and connections start or end.

 Events are issued to report the progress of data retrieval in the following
cases: when you navigate through the rows of a Recordset object,
when you change a field in a row of aRecordset, when you change a
row in a Recordset or make any change in the entire Recordset.

 We can display the data from a Recordset (data source) using ADO
code or with the help of the ADO data control. In order to use the ADO
Data, we need to add the control to the form.

 You will need this option if you are going to link a Textbox or a grid or some
such control to an application like MS Excel or MS Word via DDE.

 The other two tabs, Font and Color allow you to customise the appearance
of the ADO data control.

 Cursor is a set of pointer that points the data. A cursor is like a result set but
the actual data is on the server.

 Locking is a technique that is used in a multiuser database environment to
prevent users from editing one or more records on the database. For example,
you are working in a multiuser database environment and want to edit
database records.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
Material 275

13.5 KEY WORDS

 ADO Data Control: It is the principal interface between a VB application
and a database, which can be used without writing any code at all.

 Data Control: It is a link between information in the user’s database and
the bound controls that the user uses to display the information.

 RecordSet: It refers to the set of records (or simply a table) that are
retrieved from an object as determined by RecordSource property.

 Parameter: A parameter represents a value that the procedure expects
you to pass when you call it.

 Snapshots-type RecordSet: It is a static copy of a set of records that the
user can use to find data or generate reports.

 Cursor: Cursor is a set of pointer that points the data. A cursor is like a
result set but the actual data is on the server. You can create a cursor by
copying the data from the server to the client.

 Locking: Locking is a technique that is used in a multiuser database
environment to prevent users from editing one or more records on the
database.

13.6 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. Define the term ActiveX Data Objects.

2. State about the Remote Data Objects.

3. What is OLE DB?

4. Why we use OLE DB?

5. Elaborate on the ActiveX Data Object Model.

6. Explain the term Accessing ADO data control.

7. Define the term locking.

Long-Answer Questions

1. Describe the various steps of accessing data through ADO control.

2. What are RecordSet and its types? Explain accessing, navigating,
modifying data in a database through RecordSet.

3. Discuss briefly adding, updating and deleting records with the help of
example.

Active Data Objects
(ADO) and ADO Primer

NOTES

Self-Instructional
276 Material

4. Write the advantages and disadvantage of DAO, RDO and ADO.

5. Discuss ActiveX data object model and the activities that are performed
by the classes and objects of ADO model.

6. Briefly describe the cursors. Discuss the steps a cursor type in programs.
Give code to support you answers.

7. Describe the term Locking and its properties.

13.7 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

Connecting to
the Database

NOTES

Self-Instructional
Material 277

UNIT 14 CONNECTING
TO THE DATABASE

14.0 Introduction
14.1 Objectives
14.2 Database Connectivity
14.3 Retrieving a Recordset

14.3.1 What is Data Provider?
14.3.2 What is OLE DB?
14.3.3 Accessing Database using ADO Control

14.4 Working with Queries
14.4.1 Parameterized Queries
14.4.2 Action Query

14.5 Adding Records and Editing Records
14.5.1 ADO: Adding a Record to a Record Set
14.5.2 ADO: Editing a Record in a Record Set

14.6 Closing the Database Connection
14.7 Answers to Check Your Progress Questions
14.8 Summary
14.9 Key Words

14.10 Self-Assessment Questions and Exercises
14.11 Further Readings

14.0 INTRODUCTION

Applications communicate with a database for two basic functions or purposes.
First function is to retrieve the data stored in the database and to present it in a
user-friendly manner, and second function is to update the existing database by
inserting the data, modifying the data and deleting the data that is not required.

Microsoft ActiveX Data Objects.NET (ADO.NET) is considered as a
model, a part of the .NET framework that is specifically used by the .NET
applications for retrieving, accessing and updating data. The data that resides or
exists in a database is retrieved through the data provider. Various components of
the data provider retrieve the data and also update the data.

ADO.NET is a large set of .NET class that enable us to retrieve data,
manipulate data, and update data sources in various ways. As an integral part of
the .NET framework, it shares many of its features, such as multi-language support,
garbage collection, just-in-time compilation, object-oriented design, and dynamic
caching. It has upgraded features in comparison to the previous versions of ADO.
Consequently, the ADO.NET is considered as a core component of any data-
driven .NET application or Web Services.

Connecting to
the Database

NOTES

Self-Instructional
278 Material

Furthermore, the ADO.NET is a part of the .NET framework architecture.
It is a model used by .NET applications to communicate with a database for
retrieving, accessing, and updating data.

In this unit, you will study about the database connectivity, retrieving a
recordset, creating a query dynamically, using a parameterized query, using action
queries, saving, adding, editing and closing the database connection.

14.1 OBJECTIVES

After going through this unit, you will be able to:

 Connect database to Visual Basic applications

 Elaborate on the concept of editing, saving, adding and deleting records

 Discuss the significance of retrieving RecordSet from the database

 Create a query dynamically

 Use the parameterized query and action queries

 Explain about the browsing of data from the data source

 Close the database connection

14.2 DATABASE CONNECTIVITY

Microsoft’s ActiveX Data Objects (ADO) is the new data access technology
developed by Microsoft. It comprises of a set of Component Object Model (COM)
objects for accessing data sources. As a significant part of MDAC (Microsoft
Data Access Components), ADO provides a middleware layer between
programming languages and OLE DB (Object Linking and Embedding, DataBase),
a means of accessing data stores, whether databases or not, in a uniform manner.
ADO allows to write programs for accessing data from the data source without
even knowing how the database is implemented, but the programmer must know
about the database connection. Microsoft introduced ADO in October 1996,
positioning the software as a successor to Microsoft’s earlier object layers for
accessing data sources, including RDO (Remote Data Objects) and DAO (Data
Access Objects).

ADO is supported in any development language that supports binding to
binary COM interfaces. These languages include ASP (Active Server Pages),
Delphi, PowerBuilder, and Visual Basic for Applications (VBA). ADO.NET has
replaced ADO as the primary mode for targeting Windows application
development. ADO.NET follows the same design pattern as ADO, enabling an
ADO developer an easy path forward when moving to the .NET framework.

Open a new project to connect it to a data source by using ADO. To use
ADO in your project, you have to make a reference to it. For this, click Projects
and from the menu select References.

Connecting to
the Database

NOTES

Self-Instructional
Material 279

From the list displayed in the References dialog box, select the Microsoft
ActiveX Data Objects 2.0 Library and the Microsoft ActiveX Data Objects
Recordset 2.0 Library. Now you can use ADO in your project.

In order to achieve our objective of accessing a data source, extracting a
set of records from it and manipulating or editing the RecordSet and finally
updating the data source, we have to follow the steps given below:

 Make a connection to a data source.

 Create a command to specify the records to be extracted.

 Execute the command.

 Navigate and edit the data in the RecordSet (We assume that the
data is returned as a RecordSet).

 Update the data source with changes made to the data in the
RecordSet.

Please note that while using ADO, we do not have to strictly follow the
hierarchy.

The Data Source

What we need now is a data source. Let us use the Invoice.mdb as our data
source. After deciding that Invoice.mdb is our data source, we need to define the
data source by using the Open Data Base Connectivity (ODBC) Data Source
Administrator.

Connecting to
the Database

NOTES

Self-Instructional
280 Material

The ODBC Data Source Administrator

ODBC is defined as “A standard protocol for database servers. ODBC has drivers
for various databases that enable the applications to connect to the databases and
access their data.” The condition is that these databases must have Structure Query
Language (SQL) as the standard for data access.

From the Control Panel, double-click the Administrative Tools ODBC
icon.

Click the Add button to add a data source. Another dialog box will be
displayed, asking you to select the driver.

Connecting to
the Database

NOTES

Self-Instructional
Material 281

Select Microsoft Access driver (*.mdb) since we are going to work on our
Invoice.mdb. Click Finish. The next dialog box displayed will ask you to specify
the name of the database.

Click Select to choose the name of the .mdb file. After selecting the .mdb
file, enter the name of the data source. You will be using this name as the DSN
(Data Source Name). Click OK and exit from the ODBC administrator.

We will use the Data Source Name given here in the following example.

Using the Data Source Name in Our Project

In the General declaration, add the following lines of code:
Dim adocon As New ADODB.Connection

Dim rs As Recordset

Dim strconnect As String

The first line declares and sets ‘adocon’ as an ADODB connection object. You
can declare the above as follows:

Dim adocon as ADODB.Connection

In the Form_Load event you can say
Set adocon = New ADODB.Connection

We have declared the connection object. Now to set the connection to a data
source, add the following lines of code in the Form_Load event:

adocon.ConnectionString = “DSN=dsnname” ‘

This line will set the connection string property of the ‘adocon’ object to the data
source name. Remember that the name of the Data Source Name entered in the
ODBC administrator must be given here. The next line opens the database.

adocon.Open

Add the line “MsgBox adocon.DefaultDatabase” in the above code and
check if the database has been opened.

Run the program and checkout if you have managed to set up a connection
with the data source using ADO.

Connecting to
the Database

NOTES

Self-Instructional
282 Material

14.3 RETRIEVING A RECORDSET

To provide access to ADORecordSet andRecord objects from ADO.NET,
the OLE DB .NET Data Provider overloads the Fill method of the
OleDbDataAdapter to accept an ADO RecordSet object or an ADO
Record object. Filling a DataSet with the contents of an ADO object is a
one-way operation. That is, data can be imported from the ADO RecordSet
or Record into the DataSet, but any updates to the data must be handled
explicitly by either ADO.NET or ADO.

14.3.1 What is Data Provider?

A data provider is a control or object or mechanism that provides data for use by
connecting to a source of data, for example a database or a text file. The data
provider makes data connectivity much easier by hiding most of the implementation
of data storage.

14.3.2 What is OLE DB?

OLE DB (Object Linking and Embedding, DataBase) is the underlying system
service that a programmer using ADO actually uses. OLE DB is a set of interfaces
that provides applications with uniform access to data stored in diverse information
sources or data stores. OLE DB is suitable for relational and non-relational data
sources. That is, with OLE DB, you can access all types of databases in the same
manner.

14.3.3 Accessing Database using ADO Control

We can access Microsoft Access database using ActiveX Data Object Data Control

(ADO DC). You can create VB applications using ADO DC in two ways:

 Employing ADO DC interactively using VB connection Wizard Data Access
UsingADO.

 Writing code, i.e., programming ADO (ADO DB).

Setting Up and using ADO Data Control

Design a Visual Basic (VB) application that displays the records of table Author
using the Microsoft Access database option.

Connecting to
the Database

NOTES

Self-Instructional
Material 283

1. Start up VB with a Standard EXE Project.

2. Go to the Project menu and select Component (shown in the screenshot

given below). Now add two new controls to your project.

• The Microsoft ADO Data Control (OLE DB)

• The Microsoft Hierarchical Flex Grid Control 6.0

You will find that your toolbox is now populated with two more icons as shown in
the screenshot given below.

3. Now change the Caption of your main form to ‘Example of ADO Control’.

Connecting to
the Database

NOTES

Self-Instructional
284 Material

Setting Up ADO Control

4. Add an ADO data control to the form using the ADO DC tool and drawing
it on the form. Name it as Adodc1 and change its Visible property to false.

5. Right-click this control and select the ADODC properties option from the
shortcut menu that appears.

6. This will invoke the Property Pages (refer screenshot given below) for the
ADO DC control that you added in your project. Now, under the General
tab, select the source of connection as Use Connection String and click on
the Build button. Alternatively, just select the ADO Data control and click
the expression builder button in its Connection property or click in its

(Custom) property.

\

Connect to Database

7. Now go to another Dialog Box Data Link Properties Pops Up.
Select Microsoft Jet 4.0 OLE DB provider for Microsoft Access from the
list that appears and click next.

Connecting to
the Database

NOTES

Self-Instructional
Material 285

8. Since you do not have to choose from multiple servers, just type a valid
user name and password entry in the dialog that appears as shown below in
the screenshot. The new window will appear, click on the Test Connection

button.

Now, this VB wizard will setup a connection to the Microsoft Access
database. If the connection test is successful, the following Dialog Box will
appear.

9. Click OK in the Data Link Properties Dialog Box and then again in the
Property Pages Dialog Box.

Specifying the Record Source

10. Now, once again in the Property Pages (bring it by right-clicking the ADO
control and selecting properties), under the RecordSource tab, specify
the

RecordSource by first selecting the Command Type as 2-adCmdTable
and then by selecting the desired data table from the database, as shown
below.

Connecting to
the Database

NOTES

Self-Instructional
286 Material

The Command Type basically specifies the type of data source to which the
ADO control is attached. It can take any of the following values as shown in the
Table 14.1.

Table 14.1 Values Taken by Command Type

11. After setting up the ADO control, add a Hierarchical Flex Grid to your
form by picking the HflexGrid tool and drawing it on your main form. The
HflexGrid helps to show data in the tabular form.

12. Set the Name property of HflexGrid to HfGrid1.

13. Select the HflexGrid control and in the Properties window, first of all, set its
DataSource property to Adodc1, the name of ADO data control must be
included in the project (refer screenshot given below).

14. Now to set other properties, bring its Property Pages Dialog Box by
Right-clicking on the HflexGrid control and selecting the Property option
(as shown below). Further, under the General tab of Property Pages, set
number of Columns to 8, fix Rows to 1, and fix Cols to 1and click OK. You
can adjust the height and width of the control on the form by dragging its
handles.

Connecting to
the Database

NOTES

Self-Instructional
Material 287

15. Save your project and run it.

Check Your Progress

1. Explain about Microsoft's ActiveX Data Objects (ADO).

2. List out the steps for accessing a data source, extracting records and
updating the data source.

3. Write down the full form of ODBC.

4. Give definition of ODBC.

5. Explain about the data provider.

6. What do you mean by OLE control?

7. State the ways to create VB application using ActiveX Data Object Data
Control (ADO DC).

14.4 WORKING WITH QUERIES

A query is a way of requesting information from the database. A database query
can be either a select query or an action query. A select query is a query for
retrieving data, while an action query requests additional actions to be performed
on the data, like deletion, insertion, and updating. Visual Basic supports SQL
(Structured Query Language) to declare and run required queries.

Dynamic SQL is a programming technique that enables to build SQL
statements dynamically at runtime. More general purpose and flexible applications
can be created using the Dynamic SQL because the full text of a SQL statement
may be unknown at compilation. For example, Dynamic SQL helps in creating a
procedure that operates on a table whose name may not be known till runtime.

SQL Server provides different methods for running a dynamically built SQL
statement. The Dynamic SQL query can be written with parameters. The simple

Connecting to
the Database

NOTES

Self-Instructional
288 Material

method is, within the declaration you can pass parameters into your WHERE
clause of your SQL statement. Consider the following example for finding all records
from the customers table where City = ‘DELHI’. The example code is,

DECLARE @city varchar(75)

 SET @city = ‘DELHI’

 SELECT * FROM Person.Address WHERE City = @city

14.4.1 Parameterized Queries

Parameterized queries are basically the same as an ordinary query, but they allow
you to make use of parameters inside your queries. A parameter is additional
information you can provide to an SQL query. This information usually works in
conjunction with a condition inside the SQL query.

A simple example of an SQL Query containing a parameter looks like this:

“Select * From StudentInfo where StudentName = @Name”

In this case, Name is a parameter. To provide a value to the parameter, you
can use the following VB.NET code:

‘Create Parameter Instead Of Hardcoding Values

‘Name = whatever txtSearch Contains

oleAccCommand.Parameters.AddWithValue (“Name”,

txtSearch. Text)

In the above code we have added a parameter to a command calledName
and provide the value of whatever text has been entered into thetxtSearch
TextBox. The user can now type any value inside the txtSearch TextBox,
and it will be added to the final query that will run on the database. Another way to
add parameter in the code is as follows:

command.Parameters.Add (“@StudentNumber”, SqlDbType.Int)

command.Parameters (“@StudentNumber”).Value =
txtStudentNumber.Text

In the above code, in the first line the parameter is created to set its data
type. In the next line, a value is added automatically when the code is executed.
Following example will make the concept clear.

To get a better understanding of how parameters work, we will make use
of Visual Basic 6.0. Start a new Windows Forms Project. Following figure will
demonstrate how to use Parameters within your queries to a Microsoft Access
DataBase.

Connecting to
the Database

NOTES

Self-Instructional
Material 289

Create a table named StudentInfo inside a database named Students, and then
create the following three fields:

1. StudentName, which has a Text Data Type.

2. StudentSurname, which has a Text Data Type.

3. StudentNumber, which has Numeric Data Type.

Navigate to your desired Form’s code window and add the following Imports
statement to import the Namespace equipped to handle Microsoft Access
DataBase:

Imports System.Data.OleDb ‘Import Access Db Handling

Capabilities

Add the following modular variables, which can be used in the form(s):
‘Access Database Connection String

Dim strAccConn As String =
“Provider=Microsoft.ACE.OLEDB.12.0; Data
Source=C:\Users\HannesTheGreat\Documents\Students.accdb;Persist
Security Info=False;”

‘Object To Use As SQL Query

Dim strAccQuery As String

‘Access Database Connection

Dim oleAccCon As OleDbConnection

A string object is created with Microsoft Access Connection String
Information. Specify the exact location of the Microsoft Access Database as
well as security information.

Add the Form_Load event:

Private Sub Form1_Load (sender As Object, e As EventArgs)
Handles MyBase.Load

Connecting to
the Database

NOTES

Self-Instructional
290 Material

‘Search SQL Query

‘This Query Simply Retrieves All Information

strAccQuery = “Select * From StudentInfo”

‘Instantiate Connection Object

oleAccCon = New OleDbConnection(strAccConn)

‘Using Structure Simplifies Garbage Collection And
Ensures That The Object Will Be Disposed Of Correctly
Afterwards

Using oleAccCon

‘Create Command Object, To Make Use Of SQL Query

Dim oleAccCommand As New
OleDbCommand(strAccQuery, oleAccCon)

‘Open Connection To The Database

oleAccCon.Open()

‘Reader Object To Traverse Through Found Records

Dim oleAccReader As OleDbDataReader =
oleAccCommand.ExecuteReader()

‘If The Reader Finds Rows

If oleAccReader.HasRows Then

‘Retrieve The Content, For Each Match

While oleAccReader.Read()

‘GetString(1) Represents Column 2 Of
StudentsInfo table

txtName.Text = oleAccReader.GetString(1)

‘GetString(2) Gets Information Stored In
Third Column

txtSurname.Text =
oleAccReader.GetString(2)

‘Use GetValue or GetInt32 Here, Because
StudentNumber Is A Number Field

txtStudentNumber.Text =
oleAccReader.GetValue(0)

Connecting to
the Database

NOTES

Self-Instructional
Material 291

End While

Else

‘No Match Was Found

MessageBox.Show(“No rows found.”)

End If

‘Close Reader Object

oleAccReader.Close()

End Using

End Sub

14.4.2 Action Query

Action queries are queries that can make changes to many records at once. They
are used to delete records, to update records, i.e., to change values in the records,
to create new tables, to delete tables and to define queries that accept a user
defined parameter.

Dim con As New ADODB.Connection

Dim rs As New ADODB.Recordset

Public Sub procedure1()

 con.Provider = “Microsoft.jet.oledb.4.0”

 con.Open(My.Application.Info.DirectoryPath &
“\Database1.mdb”)

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

 Dim str As String = InputBox(“enter first
name to search”)

 Dim query As String = “Select * from ADODB
where firstname=”&str

 procedure1()

 rs.Open(query, con, 2, 3)

 If rs.EOF = True Or rs.BOF = True Then

 MsgBox(“record not found”)

Connecting to
the Database

NOTES

Self-Instructional
292 Material

 Else

 Me.TextBox1.Text = rs.Fields(1).ToString

 Me.TextBox1.Text = rs.Fields(2).ToString

 Me.TextBox1.Text = rs.Fields(3).ToString

 End If

 rs.Close()

 con.Close()

 rs = Nothing

 con = Nothing

End Sub

14.5 ADDING RECORDS AND EDITING RECORDS

After using ActiveX Data Object (ADO) Data control, let us now learn to use
ADO programmatically.

Earlier, when you were using ADO, programming was still being done, but
not by you; it was being done by the Visual Basic (VB) connection wizard. That
is, implicit programming was occurring. In this section, we shall be learning how to

program explicitly.

Set Reference to Microsoft ActiveX Library

Before you can start writing code for ADO, make sure to set up a reference to

Microsoft ActiveX Library 2.x (x can be any number representing the
version) by following command Project à References as shown in the following
screenshot.

Connecting to
the Database

NOTES

Self-Instructional
Material 293

14.5.1 ADO: Adding a Record to a Record Set

To add a new record to an ADO recordset, you use theAddNewmethod. After
you have updated the fields of the current record, you save that record to the
database with the Update method. You can use AddNew method as shown
below.

recordset.AddNew [Fields [, Values]]

Here are the arguments for this method:

 Fields — A single name or an array of names or ordinal positions of the
fields in the new record.

 Values — A single value or an array of values for the fields in the new
record. If Fields is an array, Values must also be an array with the same

number of members.

The order of field names must match the order of field values in each array.

Let us see an example. Now, we will add a new record in the recordset
table using the adoRecordSet. In our ADO code example, the records are

added when the user clicks the appropriate button. Following is the example code:

Private Sub cmdAdd_Click()

On Error GoTo ErrLabel

adoRecordset.AddNew

Text1.Text = “”

Text2.Text = “”

Exit Sub

ErrLabel:

MsgBox Err.Description

End Sub

Note that we also clear the two text boxes that display the field data,Text1 and
Text2, so that users can enter the data they want in the new record. When

done, the Update button is pressed to update the data source.

14.5.2 ADO: Editing a Record in a Record Set

After changing the data in a record’s fields or adding a new record, you update the
data source to record the change, using the Update method:

Recordset. Update Fields, Values Here are the arguments for this method:

• Fields—A single name or an array of names or ordinal positions of the
fields in the new record.

• Values—A single value or an array of values for the fields in the new record.
If Fields is an array, Values must also be an array with the same number of
members. The order of field names must match the order of field values in each

Connecting to
the Database

NOTES

Self-Instructional
294 Material

array. Let us see an example. The users can update records in the ADO code
example, by clicking the appropriate button. The data source can be updated

using the following example code:

Private Sub cmdUpdate_Click ()

On Error GoTo ErrLabel

adoRecordset.Update

Exit Sub

ErrLabel:

MsgBox Err.Description

End Sub

The records can be updated in an ADO recordset.

14.6 CLOSING THE DATABASE CONNECTION

Using the Close method to close a Connection object also closes any
active Recordset objects associated with the connection. A Command object
associated with the Connection object you are closing will persist, but it will
no longer be associated with a Connection object; that is,
its ActiveConnection property will be set to Nothing. Also,
the Command object’s Parameters collection will be cleared of any provider-
defined parameters.

You can later call the Open method to re-establish the connection to the
same, or another, data source. While the Connection object is closed, calling
any methods that require an open connection to the data source generates an
error.

Closing a Connection object while there are
open Recordset objects on the connection rolls back any pending changes in
all of the Recordset objects. Explicitly closing a Connection object (calling
the Close method) while a transaction is in progress generates an error. If
a Connection object falls out of scope while a transaction is in progress,

ADO automatically rolls back the transaction.

rs.close

set rs=nothing

cn.close

set cn=nothing

Developing Applications Using Adodb

Design a small application that lets you Add, Modify, Delete and Cancel operations
on two tables Emp and Dept of Oracle database. The application must also allow
you to navigate the records. Also, it should provide options to view the complete

Connecting to
the Database

NOTES

Self-Instructional
Material 295

table in one go. There should be a main menu from where the other forms should
get invoked.

Form frmEmp

Form frmDep

 Form frmViewEmp Form frmViewDep

Connecting to
the Database

NOTES

Self-Instructional
296 Material

Form frmMain

1. Start VB and create a new project

2. Save the form and project as Employee.vbp

3. There are five forms in this project. This project could also be developed
as an MDI application, but we have developed it as an SDI application.

4. In the first form, set the caption of the form as ‘File Manipulation Program’
and create the menus as shown above.

5. Add component Microsoft Hierarchical FlexGrid Control 6.0 by following
the command Projectà Component (or Press Ctrl + T) and then selecting
this component.

6. Now add four forms, draw the controls and place them according to the
screenshot shown above.

7. Name the controls as you like. For both the HFlexGrids, set the FixedRows
as 1 and FixedCols as 0.

8. Add reference to Microsoft ActiveX Library 2.x by following the command
Projectà Reference and then selecting the desired library option.

9. Add a standard module to your project by following the command Project
à Add Module.

Declare ADO Objects

10. Now type the following code in the standard module to declare the required
ADODB objects. We declared them as Public so that these are available
everywhere in the project.

Public adoconn AsADODB.Connection ‘the Connection object
Public adorsemp As ADODB.Recordset ‘Recordset object for
emp table

Public adorsdep As ADODB.Recordset ‘Recordset object for
dept table

Connecting to
the Database

NOTES

Self-Instructional
Material 297

Define Click Events for All Menu Options

11. Open the code window of frmMain and type the following code in it to
define the click events of all menu options. If the user clicks on Select
Table à Emp, then form frmDept should get displayed; on clicking Select
Table à Dept option, form frmDept should get displayed. When the user
clicks on View Data à Employee Table option, form frmViewEmp should
get displayed and on clicking View Data à Department Table option,
form frmViewDept should get displayed. On clicking at the Exit menu option,
the application should end.

Private Sub mnuexit_Click()
End
End Sub

Private Sub mnuoptdept_Click()
frmdept.Show
End Sub

Private Sub mnuoptdepttable_Click()
frmviewdept.Show
End Sub

Private Sub mnuoptemp_Click()
frmemp.Show
End Sub

Private Sub mnuoptemptable_Click()
frmviewemp.Show

End Sub

Create the Form Load Event for Form FrmEmp

12. Double-click on form frmEmp and type the following in its Load event
procedure :

Private Sub Form_Load()
MsgBox “ Connecting Access Database.....”
Set adoconn = New ADODB.Connection
adoconn.ConnectionString = “Provider = MSDAORA; user id
= scott; password = tiger; “
adoconn.Open

Set adorsemp = New ADODB.Recordset
adorsemp.CursorType = adOpenDynamic
adorsemp.LockType = adLockOptimistic
adorsemp.Open “emp”, adoconn, , , adCmdTable
Set Text1.DataSource = adorsemp
Text1.DataField = “empno”

Connecting to
the Database

NOTES

Self-Instructional
298 Material

Set Text2.DataSource = adorsemp
Text2.DataField = “job”
Set Text3.DataSource = adorsemp
Text3.DataField = “salary”
Set Text4.DataSource = adorsemp
Text4.DataField = “ename”
Set Text5.DataSource = adorsemp
Text5.DataField = “deptno”
Set Text6.DataSource = adorsemp
Text6.DataField = “manager”
End Sub

Create the form Load event for form frmDept

13. Double-click on form frmEmp and type the following in its Load event
procedure :

Private Sub Form_Load()
MsgBox “ Connecting Access Database.....”
Set adoconn = New ADODB.Connection

adoconn.ConnectionString = “Provider = MSDAORA; user id
= scott; password = tiger; “
adoconn.Open

Set adorsdep = New ADODB.Recordset
adorsdep.CursorType = adOpenDynamic
adorsdep.LockType = adLockOptimistic
adorsdep.Open “dept”, adoconn, , , adCmdTable
Set Text1.DataSource = adorsdep
Text1.DataField = “deptno”
Set Text2.DataSource = adorsemp
Text2.DataField = “deptname”
Set Text3.DataSource = adorsemp
Text3.DataField = “location”
End Sub

Create Click events for the command button in forms frmEmp and
frmDept

14. The command button in both the forms carries out identical tasks. The only
difference is that in form frmEmp, the commands button refer to recordset,
namely adordep. Given below are the codes for click events of all buttons
in the forms frmEmp and frmDept.

Connecting to
the Database

NOTES

Self-Instructional
Material 299

Click Events of Button in Form frmEmp

Private Sub Command1_Click()
Set adorsemp = Nothing
Set adorsconn = Nothing
Me.Hide
End Sub

Private Sub Command2_Click()
If (MsgBox(“are you sure you want to save the record?”,
vbYesNo) = vbYes) Then
adorsemp.Update
MsgBox “ Record Saved!!”
End If
End Sub

Private Sub Command3_Click()
adorsemp.AddNew

End Sub

Private Sub Command4_Click()
If (MsgBox(“are you sure want to delete this record?”,
vbYesNo) = vbYes) Then

adorsemp.Delete
adorsemp.Update
MsgBox (“Record successfully deleted in table”)

End If

End Sub

Private Sub Command5_Click()
adorsemp.CancelUpdate
End Sub

Private Sub Command6_Click()
If (adorsemp.BOF = True) Then

MsgBox “beginning of File”
adorsemp.MoveLast

Else
adorsemp.MovePrevious
End If

End Sub

Private Sub Command7_Click()
If (adorsemp.EOF = True) Then

MsgBox “End of File”
adorsemp.MoveFirst

Else
adorsemp.MoveNext

End If

End Sub

Connecting to
the Database

NOTES

Self-Instructional
300 Material

Click Events of Button in Form frmDept

Private Sub Command3_Click()
Me.Hide

End Sub

The remaining click events are the same as frmEmp

15. Create events of form frmViewEmp

Private Sub Command1_Click()
Set adorsemp = Nothing
Set adoconn = Nothing
Me.Hide
End Sub

Private Sub Form_Load()
Set adoconn = New ADODB.Connection

adoconn.ConnectionString = “Provider = MSDAORA; user
id = scott; password = tiger; “
adoconn.Open
Set adorsemp = New ADODB.Recordset
adorsemp.CursorType = adOpenDynamic
adorsemp.LockType = adLockOptimistic
adorsemp.Open “emp”, adoconn, , , adCmdTable
Set MSHFlexGrid1.DataSource = adorsemp

End Sub

16. Create events of form frmViewDept

Private Sub Command1_Click()
Set adorsdep = Nothing
Set adoconn = Nothing
Me.Hide
End Sub

Private Sub Form_Load()
Set adoconn = New ADODB.Connection

adoconn.ConnectionString = “Provider = MSDAORA; user
id = scott; password = tiger; “
adoconn.Open

Set adorsdep = New ADODB.Recordset
adorsdep.CursorType = adOpenDynamic
adorsdep.LockType = adLockOptimistic
adorsdep.Open “dept”, adoconn, , , adCmdTable
Set MSHFlexGrid1.DataSource = adorsdep

End Sub

17. Save your project and run it.

Connecting to
the Database

NOTES

Self-Instructional
Material 301

Check Your Progress

8. What is a query?

9. How will you add a record to a RecordSet?

10. Define arguments ofAddNew method.

11. Explain about the argument which are used inupdate method.

12. What is the syntax for closing the connection?

14.7 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Microsoft’s ActiveX Data Objects (ADO) is the new data access technology
developed by Microsoft. It comprises of a set of Component Object Model
(COM) objects for accessing data sources. As a significant part of MDAC
(Microsoft Data Access Components), ADO provides a middleware layer
between programming languages and OLE DB (Object Linking and
Embedding, DataBase), a means of accessing data stores, whether databases
or not, in a uniform manner.

2. In order to achieve our objective of accessing a data source, extracting a
set of records from it and manipulating or editing the RecordSet and
finally updating the data source, we have to follow the steps given below:

 Make a connection to a data source.

 Create a command to specify the records to be extracted.

 Execute the command.

 Navigate and edit the data in the RecordSet (We assume that the
data is returned as a RecordSet).

 Update the data source with changes made to the data in theRecordSet.

3. Full form of ODBC is Open DataBase Connectivity.

4. ODBC is defined as “A standard protocol for database servers. ODBC
has drivers for various databases that enable the applications to connect to
the databases and access their data.” The condition is that these databases
must have Structure Query Language (SQL) as the standard for data access.

5. A data provider is a control or object or mechanism that provides data for
use by connecting to a source of data.

6. OLE DB is the underlying system service that a programmer using ADO
actually uses. OLE DB is a set of interfaces that provides applications with
uniform access to data stored in diverse information sources or data stores.
OLE DB is suitable for relational and non-relational data sources.

Connecting to
the Database

NOTES

Self-Instructional
302 Material

7. You can create VB applications using ActiveX Data Object Data Control
(ADO DC) in following two ways:

 Employing ADO DC interactively using VB connection Wizard Data
Access Using ADO

 Writing code, i.e., programming ADO (ADO DB)

8. Aquery is a way of requesting information from the database. A database
query can be either a select query or an action query. A select query is a
query for retrieving data, while an action query requests additional actions
to be performed on the data, like deletion, insertion, and updating. Visual
Basic supports SQL (Structured Query Language) to declare and run
required queries.

9. To add a new record to an ADO RecordSet, the AddNew method is
used.

10. The arguments forAddNewmethod are as follows:

o Fields—A single name or an array of names or ordinal positions of the
fields in the new record.

o Values—A single value or an array of values for the fields in the new
record. If Fields is an array, Values must also be an array with the same
number of members.

11. Recordset, Update Fields, Values Here are the arguments for update
method:

• Fields—A single name or an array of names or ordinal positions of the
fields in the new record.

• Values—A single value or an array of values for the fields in the new
record.

12. Following is the syntax for closing the connection:
rs.close

set rs=nothing

cn.close

set cn=nothing

14.8 SUMMARY

 Microsoft’s ActiveX Data Objects (ADO) is the new data access technology
developed by Microsoft. It comprises of a set of Component Object Model
(COM) objects for accessing data sources.

 As a significant part of MDAC (Microsoft Data Access Components),
ADO provides a middleware layer between programming languages and

Connecting to
the Database

NOTES

Self-Instructional
Material 303

OLE DB (Object Linking and Embedding, DataBase), a means of accessing
data stores, whether databases or not, in a uniform manner.

 Microsoft introduced ADO in October 1996, positioning the software as a
successor to Microsoft’s earlier object layers for accessing data sources,
including RDO (Remote Data Objects) and DAO (Data Access Objects).

 ADO is supported in any development language that supports binding to
binary COM interfaces. These languages include ASP (Active Server Pages),
Delphi, PowerBuilder, and Visual Basic for Applications (VBA).

 ADO.NET has replaced ADO as the primary mode for targeting Windows
application development. ADO.NET follows the same design pattern as
ADO, enabling an ADO developer an easy path forward when moving to
the .NET framework.

 Open DataBase Connectivity (ODBC) is defined as “A standard protocol
for database servers. ODBC has drivers for various databases that enable
the applications to connect to the databases and access their data.”

 The condition is that these databases must have Structure Query Language
(SQL) as the standard for data access.

 A query is a way of requesting information from the database. A database
query can be either a select query or an action query. A select query is a
query for retrieving data, while an action query requests additional actions
to be performed on the data, like deletion, insertion, and updating. Visual
Basic supports SQL (Structured Query Language) to declare and run
required queries.

 Dynamic SQL is a programming technique that enables to build SQL
statements dynamically at runtime. More general purpose and flexible
applications can be created using the Dynamic SQL because the full text of
a SQL statement may be unknown at compilation.

 Dynamic SQL helps in creating a procedure that operates on a table whose
name may not be known till runtime.

 SQL Server provides different methods for running a dynamically built SQL
statement.

 The Dynamic SQL query can be written with parameters. The simple method
is, within the declaration you can pass parameters into your WHERE clause
of your SQL statement.

 Parameterized queries are basically the same as an ordinary query, but they
allow you to make use of parameters inside your queries. A parameter is
additional information you can provide to an SQL query. This
information usually works in conjunction with a condition inside the SQL
query.

Connecting to
the Database

NOTES

Self-Instructional
304 Material

 Action queries are queries that can make changes to many records at once.
They are used to delete records, to update records, i.e., to change values in
the records, to create new tables, to delete tables and to define queries that
accept a user defined parameter.

 To provide access to ADO RecordSet and Record objects from
ADO.NET, the OLE DB .NET Data Provider overloads the Fill method of
the OleDbDataAdapter to accept an ADO Recordset object or an
ADO Record object.

 Filling a DataSet with the contents of an ADO object is a one-way
operation. That is, data can be imported from the ADO Recordset or Record
into theDataSet, but any updates to the data must be handled explicitly
by either ADO.NET or ADO.

 A data provider is a control or object or mechanism that provides data for
use by connecting to a source of data.

 The data provider makes data connectivity much easier by hiding most of
the implementation of data storage.

 OLE DB (Object Linking and Embedding, DataBase) is the underlying
system service that a programmer using ADO actually uses.

 OLE DB is a set of interfaces that provides applications with uniform access
to data stored in diverse information sources or data stores.

 OLE DB is suitable for relational and non-relational data sources. That is,
with OLE DB, you can access all types of databases in the same manner.

 We can access Microsoft Access database using ActiveX Data Object
Data Control (ADO DC).

 Visual Basic (VB) wizard will setup a connection to the Access database.

 The Source contains a Structure Query Language (SQL) command, such
as a SELECT statement.

 The Source string contains the name of a table to be retrieved. (ADO itself
creates a SQL query.) Using this option is not recommended because it can
pull in too many records.

 The Source string contains the name of a stored procedure (not applicable
to Oracle).

 This constant indicates that the type of command in the Source argument is
not known. Using this option is inefficient.

 When you were using ADO, programming was still being done, but not by
you; it was being done by the Visual Basic (VB) connection wizard. That is,
implicit programming was occurring.

Connecting to
the Database

NOTES

Self-Instructional
Material 305

 To add a new record to an ADO recordset, you use theAddNewmethod.

 After you have updated the fields of the current record, you save that record
to the database with the Updatemethod.

 A single name or an array of names or ordinal positions of the fields in the
new record.

 A single value or an array of values for the fields in the new record. If Fields
is an array, Values must also be an array with the same number of members.

 The order of field names must match the order of field values in each array.

 Using the Close method to close a Connection object also closes
any active RecordSet objects associated with the connection.

 A Command object associated with the Connection object you are
closing will persist, but it will no longer be associated with
a Connection object; that is, its ActiveConnection property
will be set to Nothing. Also, theCommandobject’s Parameters collection
will be cleared of any provider-defined parameters.

 Closing a Connection object while there are
open RecordSet objects on the connection rolls back any pending
changes in all of the RecordSet objects.

 Explicitly closing a Connection object (calling the Close method) while
a transaction is in progress generates an error. If a Connection object
falls out of scope while a transaction is in progress, ADO automatically rolls
back the transaction.

14.9 KEY WORDS

Microsoft’s ActiveX Data Objects (ADO): Microsoft’s ActiveX Data
Objects (ADO) is the new data access technology developed by Microsoft.
It comprises of a set of Component Object Model (COM) objects for
accessing data sources.

Open DataBase Connectivity (ODBC): Open DataBase
Connectivity (ODBC) is defined as, ‘A standard protocol for database
servers. ODBC has drivers for various databases that enable the applications
to connect to the databases and access their data.’
Query: A query is a way of requesting information from the database.
A database query can be either a select query or an action query. A
select query is a query for retrieving data, while an action query requests
additional actions to be performed on the data, like deletion, insertion,
and updating.

Connecting to
the Database

NOTES

Self-Instructional
306 Material

Dynamic SQL query: Dynamic SQL query can be written with
parameters. The simple method is, within the declaration you can pass
parameters into your WHERE clause of your SQL statement.

Parameterized queries: Parameterized queries are basically the same
as an ordinary query, but they allow you to make use of parameters
inside your queries. A parameter is additional information you can
provide to an SQL query.

Object Linking and Embedding (OLE): OLE DB is the underlying
system service that a programmer using ADO actually uses. OLE DB is a
set of interfaces that provides applications with uniform access to data stored
in diverse information sources or data stores. OLE DB is suitable for relational
and non-relational data sources.

Data provider: A data provider is a control or object or mechanism that
provides data for use by connecting to a source of data.

RecordSet: ARecordSet is a data structure that consists of a group
of database records, and can either come from a base table or as the result
of a query to the table.

14.10 SELF-ASSESSMENT QUESTIONS AND
EXERCISES

Short-Answer Questions

1. What is Microsoft’s ActiveX Data Objects (ADO)?
2. Define the term Open DataBase Connectivity (ODBC).

3. Write the sequence of steps you need to perform for retrieving data from an
already created data source.

4. What are queries?

5. How the query is created dynamically?

6. Differentiate between parameterized query and action query.

7. State about the data source.

8. Explain about theRecordSet.

9. What is the open method for a RecordSet?

10. Write down the syntax for closing the database connection.

Long-Answer Questions

1. Briefly discuss about the significance and characteristic properties of
Microsoft’s ActiveX Data Objects (ADO).

Connecting to
the Database

NOTES

Self-Instructional
Material 307

2. Explain the concept and methodology used for Open DataBase
Connectivity (ODBC).

3. Discuss briefly about database connectivity and the process involved for
accessing data, retrieving data and updating data from an already created
data source in ADO.

4. Briefly discuss the concept and significance of data source giving appropriate
examples.

5. Elaborate on the Open DataBase Connectivity (ODBC) data source
administrator.

6. Discuss briefly about creating a query dynamically, using a parameterized
query and action queries giving appropriate example codes.

7. Discuss briefly about the open method for an ADO connection, giving
appropriate code in Visual Basic.

8. Describe the following methods giving appropriate programing codes:

AddNew

Update

9. Briefly discuss the concept of adding and editing recodes in the database
source giving examples program codes.

10. Explain the steps and commands required to close a database connection.

14.11 FURTHER READINGS

Cornell, Gary. 1998. Visual Basic 6 from the Ground Up. New Delhi: Tata
McGraw-Hill.

Warner, Scott L. 1998. Teach Yourself Visual Basic 6. New Delhi: Tata McGraw-
Hill.

Jerke, Noel. 1999. Visual Basic 6 - The Complete Reference. New York:
McGraw-Hill.

Smith, Eric A., Valor Whisler and Hank Marquis. 1998. Visual Basic 6
Programming Bible. New Jersey: John Wiley & Sons, Inc.

Azam, M. 2001. Programming with Visual Basic. New Delhi: Vikas Publishing
House Pvt. Ltd.

Manchanda, Mahesh. 2009. Visual Programming. New Delhi: Vikas Publishing
House Pvt. Ltd.

Balena, Francesco. 1999. Programming Microsoft Visual Basic 6.0. Bangalore:
WP Publishers and Distributors (P) Ltd.

Connecting to
the Database

NOTES

Self-Instructional
308 Material

Petroutsos, Evangelos. 1998. Mastering Visual Basic 6, 1st Edition. New Delhi:
BPB Publications.

Deitel, Harvey M., Paul J. Deitel and T. Tem R. Nieto. 1999. Visual Basic 6:
How to Program. New Jersey: Prentice-Hall.

Norton, Peter. 1998. Peter Norton’s Complete Guide to Visual Basic 6. New
Delhi: Techmedia.

Reselman, Bob and Richard A. Peasley. 1998. Using Visual Basic 6. New Jersey:
Pearson Education (Que Publishing).

Donald, Bob and Oancea Gabriel. 1999. Visual Basic 6 from Scratch. New
Delhi: Prentice-Hall of India.

	Prelims.pdf (p.1-7)
	Introduction.pdf (p.8)
	Unit 1.pdf (p.9-34)
	Unit 2.pdf (p.35-54)
	Unit 3.pdf (p.55-68)
	Unit 4.pdf (p.69-98)
	Unit 5.pdf (p.99-108)
	Unit 6.pdf (p.109-136)
	Unit 7.pdf (p.137-154)
	Unit 8.pdf (p.155-170)
	Unit 9.pdf (p.171-194)
	Unit 10.pdf (p.195-226)
	Unit 11.pdf (p.227-244)
	Unit 12.pdf (p.245-262)
	Unit 13.pdf (p.263-284)
	Unit 14.pdf (p.285-316)

